PSI - Issue 68
Hamidreza Rohani Raftar et al. / Procedia Structural Integrity 68 (2025) 1066–1073 Hamidreza Rohani Raftar et al./ Structural Integrity Procedia 00 (2025) 000–000
1073
8
[18] M. Safyari, S. Bhosale, M. Moshtaghi, Capacity of hydrogen traps affects H-assisted crack initiation and propagation mechanisms in martensitic steels, Engineering Failure Analysis 163 (2024) 108560. https://doi.org/10.1016/j.engfailanal.2024.108560. [19] M. Moshtaghi, M. Safyari, G. Mori, Hydrogen absorption rate and hydrogen diffusion in a ferritic steel coated with a micro- or nanostructured ZnNi coating, Electrochemistry Communications 134 (2022) 107169. https://doi.org/10.1016/j.elecom.2021.107169. [20] F.D. León-Cázares, M. Agnani, J. Ronevich, C. San Marchi, Effects of hydrogen partial pressure on crack initiation and growth rate in vintage X52 steel, International Journal of Hydrogen Energy (2024) S0360319924007298. https://doi.org/10.1016/j.ijhydene.2024.02.292. [21] Y. Ogawa, H. Nishida, M. Nakamura, V. Olden, A. Vinogradov, H. Matsunaga, Dual roles of pearlite microstructure to interfere/facilitate gaseous hydrogen-assisted fatigue crack growth in plain carbon steels, International Journal of Fatigue 154 (2022) 106561. https://doi.org/10.1016/j.ijfatigue.2021.106561. [22] S.N.S. Mortazavi, A. Ince, An artificial neural network modeling approach for short and long fatigue crack propagation, Computational Materials Science 185 (2020) 109962. https://doi.org/10.1016/j.commatsci.2020.109962. [23] D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, J.A. Haynes, Modern data analytics approach to predict creep of high-temperature alloys, Acta Materialia 168 (2019) 321–330. https://doi.org/10.1016/j.actamat.2019.02.017. [24] M. Łazarska, T.Z. Wozniak, Z. Ranachowski, A. Trafarski, G. Domek, Analysis of acoustic emission signals at austempering of steels using neural networks, Met. Mater. Int. 23 (2017) 426–433. https://doi.org/10.1007/s12540-017-6347-z. [25] A. Standard, Standard test method for measurement of fatigue crack growth rates, (No Title) 3 (2002). [26] ASTM International, “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” in West Conshohocken, PA, vol. 03.01, ASTM E647-23b, Ed., 2024., (n.d.). [27] J. Shang, W. Chen, J. Zheng, Z. Hua, L. Zhang, C. Zhou, C. Gu, Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures, Scripta Materialia 189 (2020) 67–71. https://doi.org/10.1016/j.scriptamat.2020.08.011. [28] S. Wang, A. Nagao, P. Sofronis, I.M. Robertson, Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel, Acta Materialia 144 (2018) 164–176. https://doi.org/10.1016/j.actamat.2017.10.034. [29] E. Ohaeri, U. Eduok, J. Szpunar, Hydrogen related degradation in pipeline steel: A review, International Journal of Hydrogen Energy 43 (2018) 14584–14617. https://doi.org/10.1016/j.ijhydene.2018.06.064. [30] P.A. Schweitzer, Fundamentals of metallic corrosion: atmospheric and media corrosion of metals, (No Title) (2007). [31] B.P. Somerday, C.W. San Marchi, EFFECTS OF HYDROGEN GAS ON STEEL VESSELS AND PIPELINES., Sandia National Lab.(SNL-CA), Livermore, CA (United States), 2006.
Made with FlippingBook - Online Brochure Maker