PSI - Issue 68

Robert Sundström et al. / Procedia Structural Integrity 68 (2025) 1081–1090 Robert Sundström / Structural Integrity Procedia 00 (2025) 000–000

1090 10

Conventional and Tubular Specimens. ASME 2021 Pressure Vessels & Piping Conference, Online, The American Society of Mechanical Engineers. DOI: https://doi.org/10.1115/PVP2021-61138 Faucon, L. E., Boot, T., Riemslag, T., Scott, S. P., Liu, P. and Popovich, V. (2023). Hydrogen-Accelerated Fatigue of API X60 Pipeline Steel and Its Weld. Metals 13(3): 563. DOI: https://doi.org/10.3390/met13030563 Michler, T., Freitas, T., Oesterlin, H., Fischer, C., Wackermann, K. and Ebling, F. (2023). Tensile testing in high pressure gaseous hydrogen using conventional and tubular specimens: Austenitic stainless steels. International Journal of Hydrogen Energy 48(65): 25609-25618. DOI: https://doi.org/10.1016/j.ijhydene.2023.03.248 Konert, F., Wieder, F., Nietzke, J., Meinel, D., Böllinghaus, T. and Sobol, O. (2024). Evaluation of the impact of gaseous hydrogen on pipeline steels utilizing hollow specimen technique and μCT. International Journal of Hydrogen Energy 59: 874-879. DOI: https://doi.org/10.1016/j.ijhydene.2024.02.005 Michler, T., Ebling, F., Fischer, C., Oeser, S. and Wackermann, K. (2024). Tensile testing in high pressure gaseous hydrogen using conventional and tubular specimens: Ferritic steels. International Journal of Hydrogen Energy 70: 262-275. DOI: https://doi.org/10.1016/j.ijhydene.2024.05.238 Ebling, F., Oesterlin, H., Wackermann, K., Primus, D. and Rehme, O. (2022). Hydrogen effects on low cycle fatigue of IN718 at RT and 77K using the tubular specimen technique. Fourth International Conference on Metals & Hydrogen, Ghent, Belgium. Twite, M., Platts, N., McLennan, A., Meldrum, J. and McMinn, A. (2016). Variations in Measured Fatigue Life in LWR Coolant Environments due to Different Small Specimen Geometries. ASME 2016 Pressure Vessels and Piping Conference. DOI: https://doi.org/10.1115/pvp2016-63584 Asada, S., Tsutsumi, K., Fukuta, Y. and Kanasaki, H. (2017). Applicability of hollow cylindrical specimens to environmental assisted fatigue tests. ASME 2017 Pressure Vessels and Piping Conference, Waikoloa, Hawaii, USA, The American Society of Mechanical Engineers. DOI: https://doi.org/10.1115/PVP2017-65514 Xiong, Y., Watanabe, Y. and Shibayama, Y. (2020). Effects of dissolved hydrogen on low-cycle fatigue behaviors and hydrogen uptake of 316LN austenitic stainless steel in simulated pressurized water reactor primary water. International Journal of Fatigue 134: 105457. DOI: https://doi.org/10.1016/j.ijfatigue.2019.105457 Ding, J., Tan, J., Zhang, Z., Wang, X., Wu, X., Han, E.-H. and Ke, W. (2023). Low cycle fatigue behavior of 316LN stainless steel hollow specimen in air and liquid lead–bismuth eutectic. International Journal of Fatigue 175: 107812. DOI: https://doi.org/10.1016/j.ijfatigue.2023.107812 ISO (2024). Method for evaluating the susceptibility of materials to the effects of high-pressure gas within hollow test pieces (ISO Standard No. ISO 7039:2024), International Organization for Standardization. Lee, J. A. (2012). 17 - Hydrogen embrittlement of nickel, cobalt and iron-based superalloys. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies . R. P. Gangloff and B. P. Somerday, Woodhead Publishing. 2: 624-667 DOI: https://doi.org/10.1533/9780857093899.3.624 Fritzemeier, L. C. and Chandler, W. T. (1989). 15 - Hydrogen Embrittlement—Rocket Engine Applications. Superalloys Supercomposites Superceramics . J. K. Tien and T. Caulfield, Academic Press: 491-524 DOI: https://doi.org/10.1016/B978-0-12-690845-9.50021-X Queiroga, L. R., Marcolino, G. F., Santos, M., Rodrigues, G., Eduardo dos Santos, C. and Brito, P. (2019). Influence of machining parameters on surface roughness and susceptibility to hydrogen embrittlement of austenitic stainless steels. International Journal of Hydrogen Energy 44(54): 29027-29033. DOI: https://doi.org/10.1016/j.ijhydene.2019.09.139 Wada, Y., Ishigaki, R., Tanaka, Y., Iwadate, T. and Ohnishi, K. (2007). Effect of surface machining on the fatigue life of low alloy steel for hydrogen pressure vessels. ASME 2007 Pressure Vessels and Piping Conference. DOI: https://doi.org/10.1115/PVP2007-26535 ASTM (2022). ASTM G142-98(2022) - Standard Test Method for Determination of Susceptibility of Metals to Embrittlement in Hydrogen Containing Environments at High Pressure, High Temperature, or Both, ASTM International. DOI: https://doi.org/10.1520/G0142-98R22 Campari, A., Konert, F., Sobol, O. and Alvaro, A. (2024). A comparison of vintage and modern X65 pipeline steel using hollow specimen technique for in-situ hydrogen testing. Engineering Failure Analysis 163: 108530. DOI: https://doi.org/10.1016/j.engfailanal.2024.108530 Van Den Avyle, J. A. (1983). Low cycle fatigue of tubular specimens. Scripta Metallurgica 17(6): 737-740. DOI: https://doi.org/10.1016/0036 9748(83)90484-2 Bae, K.-H. and Lee, S.-B. (2011). The effect of specimen geometry on the low cycle fatigue life of metallic materials. Materials at High Temperatures 28(1): 33-39. DOI: https://doi.org/10.3184/096034011X12982896521562

Made with FlippingBook - Online Brochure Maker