PSI - Issue 68
Robert Sundström et al. / Procedia Structural Integrity 68 (2025) 1081–1090 Robert Sundström / Structural Integrity Procedia 00 (2025) 000–000
1089
9
https://doi.org/10.2514/2.6942 Kanz, O., Brüggemann, F., Ding, K., Bittkau, K., Rau, U. and Reinders, A. (2023). Life-cycle global warming impact of hydrogen transport through pipelines from Africa to Germany. Sustainable Energy & Fuels 7(13): 3014-3024. DOI: https://doi.org/10.1039/D3SE00281K Klima, S. J., Nachtigall, A. J. and Hoffman, C. A. (1962). Preliminary Investigation of Effect of Hydrogen on Stress-Rupture and Fatigue Properties of an Iron-, Nickel-, and a Cobalt-Base Alloy,. Washington, D.C., USA, National Aeronatuics and Space Administration. Walter, R. J. and Chandler, W. T. (1969). Effects of high-pressure hydrogen on metals at ambient temperature. Canoga Park, California, USA, National Aeronautics and Space Administration. Jewett, R. P., Walter, R. J., Chandler, W. T. and Frohmberg, R. P. (1973). Hydrogen environment embrittlement of metals. Washington, D.C., USA, National Aeronautics and Space Administration. Ha, D., Roh, T.-S., Huh, H. and Lee, H. J. (2023). Development Trend of Liquid Hydrogen-Fueled Rocket Engines (Part 1: Performance and Operation). International Journal of Aeronautical and Space Sciences 24(1): 131-145. DOI: https://doi.org/10.1007/s42405-022-00519-7 Gradl, P., Mireles, O. R., Katsarelis, C., Smith, T. M., Sowards, J., Park, A., Chen, P., Tinker, D. C., Protz, C., Teasley, T., Ellis, D. L. and Kantzos, C. (2023). Advancement of extreme environment additively manufactured alloys for next generation space propulsion applications. Acta Astronautica 211: 483-497. DOI: https://doi.org/10.1016/j.actaastro.2023.06.035 Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Leary, M., Berto, F. and du Plessis, A. (2021). Metal additive manufacturing in aerospace: A review. Materials & Design 209: 110008. DOI: https://doi.org/10.1016/j.matdes.2021.110008 Gradl, P., Tinker, D. C., Park, A., Mireles, O. R., Garcia, M., Wilkerson, R. and McKinney, C. (2022). Robust Metal Additive Manufacturing Process Selection and Development for Aerospace Components. Journal of Materials Engineering and Performance 31(8): 6013-6044. DOI: https://doi.org/10.1007/s11665-022-06850-0 Yu, H., Díaz, A., Lu, X., Sun, B., Ding, Y., Koyama, M., He, J., Zhou, X., Oudriss, A., Feaugas, X. and Zhang, Z. (2024). Hydrogen Embrittlement as a Conspicuous Material Challenge─Comprehensive Review and Future Directions. Chemical Reviews 124(10): 6271-6392. DOI: https://doi.org/10.1021/acs.chemrev.3c00624 Chandler, W., Walter, R. and Raymond, L. (1974). Testing to Determine the Effect of High-Pressure Hydrogen Environments on the Mechanical Properties of Metals. Hydrogen Embrittlement Testing , ASTM International. STP543-EB: 0 DOI: https://doi.org/10.1520/stp38937s Vesely, E. J., Bhat, B. N., McPherson, W. B., Gerthlein, C. E. and Jones, C. S. (2002). Reproducibility and Repeatability of Tensile and Low-Cycle Fatigue Properties in Propulsion Grade Hydrogen. INTERNATIONAL CONFERENCE ON HYDROGEN EFFECTS ON MATERIAL BEHAVIOR and CORROSION DEFORMATION INTERACTIONS, Moran, Wyoming, USA. Jürgensen, J. and Pohl, M. (2023). Impact and Detection of Hydrogen in Metals. HTM Journal of Heat Treatment and Materials 78(5): 257-275. DOI: https://doi.org/10.1515/htm-2023-0020 Nibur, K. A. and Somerday, B. P. (2012). Fracture and fatigue test methods in hydrogen gas. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies . R. P. Gangloff and B. P. Somerday, Woodhead Publishing. 1: 195-236 DOI: https://doi.org/10.1533/9780857093899.2.195 Ogata, T. and Ono, Y. (2019). Influence of roughness of inner surface of simple mechanical testing method to evaluate influence of high pressure hydrogen gas. ASME 2019 Pressure Vessels & Piping Conference, San Antonio, Texas, USA. DOI: https://doi.org/10.1115/PVP2019-93492 Michler, T., Ebling, F., Oesterlin, H., Fischer, C. and Wackermann, K. (2022). Comparison of tensile properties of X60 pipeline steel tested in high pressure gaseous hydrogen using tubular and conventional specimen. International Journal of Hydrogen Energy 47(81): 34676-34688. DOI: https://doi.org/10.1016/j.ijhydene.2022.07.211 Liu, X. L., Chen, X. D., Wang, B., Fan, Z. C. and Zhuang, Q. W. (2015). Development of New Material Testing Apparatus in Hydrogen at Elevated Temperature. Procedia Engineering 130: 1046-1056. DOI: https://doi.org/10.1016/j.proeng.2015.12.261 Bradley, P. E., Martin, M. L., Connolly, M. J., Amaro, R. L., Lauria, D. S. and Slifka, A. J. (2023). Modification to a testing assembly to enable strain-life measurements in pressurized hydrogen gas. Review of Scientific Instruments 94(8). DOI: https://doi.org/10.1063/5.0131798 Boot, T., Riemslag, T. A. C., Reinton, E. T. E., Liu, P., Walters, C. L. and Popovich, V. (2021a). In-Situ Hollow Sample Setup Design for Mechanical Characterisation of Gaseous Hydrogen Embrittlement of Pipeline Steels and Welds. Metals 11(8): 1242. DOI: https://doi.org/10.3390/met11081242 Freitas, T., Konert, F., Nietzke, J., Krzysch, Z., Böllinghaus, T., Michler, T., Wackermann, K., Oesterlin, H., Tlili, M., Ruchti, P., Beitelschmidt, D., Elsen-Humberg, S., Koenigs, T., Systermans, T. and Sobol, O. (2024). Tensile testing in high-pressure gaseous hydrogen using the hollow specimen method. MRS Bulletin. DOI: https://doi.org/10.1557/s43577-024-00776-9 Dodge, B. F. (1953). High-Pressure Research in Chemical Engineering Department of Yale University. Transactions of the American Society of Mechanical Engineers 75(3): 331-343. DOI: https://doi.org/10.1115/1.4015285 Ogata, T. (2008a). Evaluation of Hydrogen Embrittlement by Internal High Pressure HydrogenEnvironment in Specimen. Journal of the Japan Institute of Metals and Materials 72(2): 125-131. DOI: https://doi.org/10.2320/jinstmet.72.125 Ogata, T. (2008b). Simple Evaluation of Hydrogen Environment Embrittlement of Stainless Steels at Low Temperatures. Journal of High Pressure Institute of Japan 46(4): 200-204. DOI: https://doi.org/10.11181/hpi.46.200 Ogata, T. (2010). Hydrogen environment embrittlement evaluation in fatigue properties of stainless steel SUS304L at cryogenic temperatures. AIP Conference Proceedings 1219(1): 25-32. DOI: https://doi.org/10.1063/1.3402310 Ogata, T. (2012). Influence of high pressure hydrogen environment on tensile and fatigue properties of stainless steels at low temperatures. AIP Conference Proceedings 1435(1): 39-46. DOI: https://doi.org/10.1063/1.4712078 Ogata, T. (2015). Hydrogen Environment Embrittlement on Austenitic Stainless Steels from Room Temperature to Low Temperatures. IOP Conference Series: Materials Science and Engineering 102(1): 012005. DOI: https://doi.org/10.1088/1757-899X/102/1/012005 Ogata, T. (2018). Simple mechanical testing method to evaluate influence of high pressure hydrogen gas. Pressure Vessels and Piping Conference PVP2018, Prague, Czech Republic, The American Society of Mechanical Engineers. DOI: https://doi.org/10.1115/PVP2018-84187 Ueno, A. and Benjamin, G. (2019). Effect of high-pressure H2 gas on tensile and fatigue properties of stainless steel SUS316L by means of the internal high-pressure H2 gas method. Procedia Structural Integrity 19: 494-503. DOI: https://doi.org/10.1016/j.prostr.2019.12.053 Boot, T., Riemslag, T., Reinton, E., Liu, P., Walters, C. L. and Popovich, V. (2021b). Assessing the Susceptibility of Existing Pipelines to Hydrogen Embrittlement. TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings, Cham, Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-65261-6_65 Michler, T., Wackermann, K., Ebling, F. and Oesterlin, H. (2021). Comparison of Tensile Test Results in High Pressure Gaseous Hydrogen Using
Made with FlippingBook - Online Brochure Maker