Issue 65

A. Namdar et alii, Frattura ed Integrità Strutturale, 65 (2023) 112-134; DOI: 10.3221/IGF-ESIS.65.09

[15] Hsieh, S.Y., Lee, L.T. (2011). Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration. Eng. Geol. 122 (1-2), pp. 34–42. [16] Ramakrishna Annapareddy, V.S., Pain, A., Sufian, A., Godas, S., Scheuermann, A. (2023). Influence of heterogeneity and elevated temperatures on the seismic translational stability of engineered landfills. Waste Manage. 158, pp. 1-12. DOI: 10.1016/j.wasman.2023.01.004. [17] Kavazanjian Jr, E., Gutierrez, A. (2017). Large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading. Waste Manage. 68, pp. 252-262. DOI:10.1016/j.wasman.2017.01.029 [18] Zania, V., Tsompanakis, Y., Psarropoulos, P.N. (2010). Seismic displacements of landfills and deformation of geosynthetics due to base sliding. Geotext. Geomembr. 28, pp. 491-502. DOI: 10.1016/j.geotexmem.2009.12.013. [19] Yazdani, R., Campbell, J.L., Koerner, G.R. (1995). Long-term in situ strain measurements of a high density polyethylene geomembrane in a municipal solid waste landfill. In: Geosynthetics ’95 Conference Proceedings, pp. 893–906. [20] Cortellazzo, G., Russo, L.E., Busana, S., Carbone, L., Favaretti, M., Hangen, H. (2022). Field trial of a reinforced landfill cover system: performance and failure. Geotext. Geomembr. 50, pp. 655-667. DOI: 10.1016/j.geotexmem.2022.03.007. [21] Hamdi, N., Srasra, E. (2013). Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste. Waste Manage. 33, pp. 60-66. DOI: 10.1016/j.wasman.2012.08.012. [22] Aswathy. C.M., Sunil, B.M. (2022). Effect of ammonia on the hydraulic conductivity and adsorption characteristics of lithomargic clay - bentonite barrier in landfills. J. Environ. Chem. Eng. 10, 108750. DOI: 10.1016/j.jece.2022.108750. [23] Emmanuel, E., Anggraini, V., Raghunandan, M.E., Asadi, A. (2020). Utilization of marine clay as a bottom liner material in engineered landfills, J. Environ. Chem. Eng. 8, 104048, DOI: 10.1016/j.jece.2020.104048. [24] Daniel, D.E. (1993). Geotechnical Practice for Waste Disposal, Chapman & Hall Ltd, London, 1993, pp. 137–163. [25] Rowe, R.K., Quigley, R.M., Booker, J.R. (1995). Clayey Barrier Systems for Waste Disposal Facilities, E & FN Spon, London, p. 390. [26] Namdar, A. (2020). Forecasting bearing capacity of the mixed soil using artificial neural networking. Frat. ed Integrita Strutt. 14 (53), pp. 285-294. DOI:10.3221/IGF-ESIS.23.22 [27] Omar, M., Shanableh, A., Mughieda, O., Arab, M., Zeiada, W., Al-Ruzouq, R. (2018). Advanced mathematical models and their comparison to predict compaction properties of fine-grained soils from various physical properties. Soils Found. 58, pp. 1383-1399. DOI:10.1016/j.sandf.2018.08.004 [28] Bordonaro, G.G., Leardi, R., Diviani, L., Berto, F. (2018). Design of Experiment as a powerful tool when applying Finite Element Method: a case study on prediction of hot rolling process parameters. Frat. ed Integrita Strutt. 12(44), pp. 1-15. DOI: 10.3221/IGF-ESIS.44.01. [29] Foti, P., Berto, F., Filippi, S. (2018). Fatigue assessment of welded joints by means of the Strain Energy Density method: Numerical predictions and comparison with Eurocode 3: Numerical predictions and comparison with Eurocode 3. Frat. ed Integrita Strutt. 13(47), pp. 104-125. DOI: 10.3221/IGF-ESIS.47.09. [30] Rankine, W. (1857). On the stability of loose earth. Philosophical Transactions of the Royal Society of London, 147. [31] Budhu, M. (2010). Soil mechanics and foundations. John Wiley & Sons, Inc. [32] Craig, R.F. (2004). Soil Mechanics. Spon Press. Taylor & Francis Group. [33] Namdar, A. (2021). The boundary condition simulation quality for embankment seismic response. Eng. Fail. Anal. 126, 1054a91. DOI: 10.1016/j.engfailanal.2021.105491 [34] Center for Engineering Strong Motion Data (CESMD), https://strongmotioncenter.org/ [35] Singh, M.K., Sharma, J.S., Fleming, I.R., (2009). A design chart for estimation of horizontal displacement in municipal landfills. Waste Manage. 29, pp. 1577-1587. DOI: 10.1016/j.wasman.2008.10.003. [36] Matasovi ć , N., Kavazanjian Jr, E., (1998). Cyclic characteristics of OII landfill soil waste. J GEOTECH GEOENVIRON. 124(3), pp. 197-210. DOI: 10.1061/(ASCE)1090-0241(1998)124:3(197). [37] Seo, B. (2008). Compositional effects on the mechanical properties of municipal solid waste. Arizona State University. Doctoral thesis. UMI Number: 3339537. [38] Davis, E.H., Christian, J.T. (1971). Bearing capacity of anisotropic cohesive soil. J. Soil Mech. Found. Divis. ASCE 97 (5), pp. 753-769. [39] Jamshidi Chenari, R., Bathurst, R.J. (2023). Influence of geosynthetic stiffness on bearing capacity of strip footings seated on thin reinforced granular layers over undrained soft clay. Geotext. Geomembr. 51, pp. 43-55. DOI: 10.1016/j.geotexmem.2022.09.006. [40] Babuska, I., Melenk, J.M. (1998). The partition of unity method. Int J Numer Methods Eng. 40(4), pp. 727-758. DOI: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N [41] Namdar, A., Karimpour-Fard, M., Muhammad, N. (2022). The seismic resistance simulation for cracked clayey backfill. Eng. Fail. Anal. 140, 106616. DOI: 10.1016/j.engfailanal.2022.106616. [42] Namdar, A., Berto, F., Muhammad, N. (2022). The displacement simulation for cracked earth structure with different geometry. Procedia Struct. 41, pp. 394-402. DOI: 10.1016/j.prostr.2022.05.045.

132

Made with FlippingBook - Share PDF online