PSI - Issue 62
Edoardo Proverbio et al. / Procedia Structural Integrity 62 (2024) 285–298
297
Author name / Structural Integrity Procedia 00 (2019) 000–000
13
Gangloff, R. P. (2008). Critical issues in hydrogen assisted cracking of structural alloys. Environment-Induced Cracking of Materials, 141–165. https://doi.org/10.1016/B978-008044635-6.50015-7 Ganz, H. R., Brand, W., Kido, T., Krauser, L., Mellier, E., Nürnberger, U., Shirahama, S., van Beurden, H., Brevet, P., Chabert, A., Gläser, C., Jungwirth, D., & Windisch, A. (2012). fib Bulletin 64. Effect of zinc on prestressing steel. https://doi.org/10.35789/FIB.BULL.0064 Gerberich, W. (2012). Modeling hydrogen induced damage mechanisms in metals. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments. Woodhead Publishing Limited. https://doi.org/10.1533/9780857095374.2.209 Gerberich, W. W., Oriani, R. A., Lji, M. J., Chen, X., & Foecke, T. (1991). The necessity of both plasticity and brittleness in the fracture thresholds of iron. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 63(2), 363–376. https://doi.org/10.1080/01418619108204854 Gorman, J. A., Gross, D., Hall, T. S., Matty, S., Christoffersen, S., Cavendish Tribe, A., & Shulock, R. (2015). San Francisco-Oakland Bay Bridge Anchor Rod Cracking Issues. Materials Performance, 54(6), 52–57. Grimme, D. (1983). Spannungsrisskorrosion in Spannbetonbauwrken. Stahl Und Eisen, 103. Hirth, J. P. (1994). The Role of Hydrogen in Enhancing Plastic Instability and Degrading Fracture Toughness in Steels. In Hydrogen Effects in Materials (pp. 505–522). Wiley. https://doi.org/10.1002/9781118803363.ch45 Hunkeler, F., Matt, P., Matt, U. von, & Werner, R. (2005). Prestressing tendons, stay cables and ground anchors-Description of the systems and lessons learnt from corrosion damages. ISO 6934-3:1991 Steel for the prestressing of concrete Part 3: Quenched and tempered wire. (1991). Menga, A., Kanstad, T., Cantero, D., Bathen, L., Hornbostel, K., & Klausen, A. (2022). Corrosion-induced damages and failures of posttensioned bridges: A literature review. Structural Concrete. https://doi.org/10.1002/suco.202200297 Messina, D., Scionti, G., Recupero, A., & Proverbio, E. (2021). Failure behaviour of post-tensioned concrete beams with different corrosion damage in prestressing tendons. Fib Symposium, 213 – 219. Mietz, J., Burkert, A., Lehmann, J., Burkert, A., & Eich, G. (2008). Galvanised constructional elements in contact with prestressing steel tendons. Materials and Corrosion, 59(2), 131–138. https://doi.org/10.1002/MACO.200804114 Mietz, J., & Isecke, B. (2002). Assessment of test methods for evaluation stress corrosion cracking susceptibility of prestressing steels. Materials and Corrosion, 53(6), 373–384. https://doi.org/10.1002/1521-4176(200206)53:6<373::AID-MACO373>3.0.CO;2-C Moore, D. G., Klodt, D. T., & Hensen, R. J. (1970). NCHRP Report 90: Protection of steel in prestressed concrete bridges. Nürnberger, U. (1997). Einflüsse von Werkstoff und Verarbeitung auf die Spannungsrißkorrosion von Spannstählen. Materials and Corrosion/Werkstoffe Und Korrosion, 48(9), 602–612. https://doi.org/10.1002/maco.19970480906 Nürnberger, U. (2002). Corrosion induced failure mechanisms of prestressing steel. Materials and Corrosion, 53(8), 591–601. https://doi.org/10.1002/1521-4176(200208)53:8<591::AID-MACO591>3.0.CO;2-X Nürnberger, Ulf. (2002). Corrosion induced failures of prestressing steel. Otto-Graf-Journal, 13, 9–26. Ocel, J. M., & Provines, J. (2015). Properties of Anchor Rods Removed from San Francisco-Oakland Bay Bridge, Publication no. FHWA-HRT 15-057. Permeh, S., Vigneshwaran, K. K. K., Echeverría, M., Lau, K., & Lasa, I. (2018). Corrosion of post-tensioned tendons with deficient grout, part 2: Segregated grout with elevated sulfate content. Corrosion, 74(4), 457–467. https://doi.org/10.5006/2568 Podolny, W. (1992). Corrosion of Prestressing Steels and Its Mitigation. PCI Journal, 37(5), 34–55. https://doi.org/10.15554/pcij.09011992.34.55 Proverbio, E., & Bonaccorsi, L. (2002). Failure Of Prestressing Steel Induced By Crevice Corrosion In Prestressed Concrete Structures. 9 DBMC International Conference on Durability of Building Materials and Components. Proverbio, E., & Longo, P. (2003). Failure mechanisms of high strength steels in bicarbonate solutions under anodic polarization. Corrosion Science, 45(9), 2017–2030. https://doi.org/10.1016/S0010-938X(03)00037-4 Proverbio, E., & Longo, P. (2004). Reply to Discussion on “Failure mechanisms of high strength steels in bicarbonate solutions under anodic polarization” by L. Caballero. Corrosion Science, 46(7), 1821–1829. https://doi.org/10.1016/j.corsci.2004.01.017 Proverbio, E., & Longo, P. (2007). Sub critical crack growth in hydrogen assisted cracking of cold drawn eutectoid steel. Corrosion Science, 49(6), 2421–2435. https://doi.org/10.1016/j.corsci.2006.12.005 Recio, F. J., Alonso, M. C., Gaillet, L., & Sánchez, M. (2011). Hydrogen embrittlement risk of high strength galvanized steel in contact with alkaline media. Corrosion Science, 53(9), 2853–2860. https://doi.org/10.1016/J.CORSCI.2011.05.023 Revie, R. W. (2011). Uhlig’s Corrosion Handbook. In R. W. Revie (Ed.), Uhlig’s Corrosion Handbook: Third Edition. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470872864 Robertson, I. M., Sofronis, P., Nagao, A., Martin, M. L., Wang, S., Gross, D. W., & Nygren, K. E. (2015). Hydrogen Embrittlement Understood. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 46(6), 2323–2341. https://doi.org/10.1007/s11661 015-2836-1
Made with FlippingBook Ebook Creator