Issue 62

F. Cantaboni et alii, Frattura ed Integrità Strutturale, 62 (2022) 490-504; DOI: 10.3221/IGF-ESIS.62.33

[32] Caravaggi, P., Liverani, E., Leardini, A., Fortunato, A., Belvedere, C., Baruffaldi, F., Fini, M., Parrilli, A., Mattioli Belmonte, M., Tomesani, L., Pagani, S. (2019). CoCr porous scaffolds manufactured via selective laser melting in orthopedics: Topographical, mechanical, and biological characterization, J. Biomed. Mater. Res. - Part B Appl. Biomater., 107(7), pp. 2343–2353, DOI: 10.1002/jbm.b.34328. [33] Xie, J., MacEwan, M.R., Ray, W.Z., Liu, W., Siewe, D.Y., Xia, Y. (2010). Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications, ACS Nano, 4(9), pp. 5027–5036, DOI: 10.1021/nn101554u. [34] Mahmoudi, M., Elwany, A., Yadollahi, A., Thompson, S.M., Bian, L., Shamsaei, N. (2017). Mechanical properties and microstructural characterization of selective laser melted 17-4 PH stainless steel, Rapid Prototyp. J., 23(2), pp. 280–294, DOI: 10.1108/RPJ-12-2015-0192. [35] Seede, R., Shoukr, D., Zhang, B., Whitt, A., Gibbons, S., Flater, P., Elwany, A., Arroyave, R., Karaman, I. (2020). An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: Densification, microstructure, and mechanical properties, Acta Mater., 186, pp. 199–214, DOI: 10.1016/j.actamat.2019.12.037. [36] Zhao, C., Fezzaa, K., Cunningham, R.W., Wen, H., De Carlo, F., Chen, L., Rollett, A.D., Sun, T. (2017). Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction, Sci. Rep., 7(1), pp. 1– 11, DOI: 10.1038/s41598-017-03761-2. [37] Darvish, K., Chen, Z.W., Phan, M.A.L., Pasang, T. (2018). Selective laser melting of Co-29Cr-6Mo alloy with laser power 180–360 W: Cellular growth, intercellular spacing and the related thermal condition, Mater. Charact., 135(September 2017), pp. 183–191, DOI: 10.1016/j.matchar.2017.11.042. [38] Zhang, B., Li, Y., Bai, Q. (2017). Defect Formation Mechanisms in Selective Laser Melting: A Review, Chinese J. Mech. Eng. (English Ed., 30(3), pp. 515–527, DOI: 10.1007/s10033-017-0121-5. [39] Prashanth, K.G., Eckert, J. (2017). Formation of metastable cellular microstructures in selective laser melted alloys, J. Alloys Compd., 707, pp. 27–34, DOI: 10.1016/j.jallcom.2016.12.209. [40] Roudnická, M., Molnárová, O., Drahokoupil, J., Kubásek, J., Bigas, J., Šreibr, V., Paloušek, D., Vojt ě ch, D. (2021). Microstructural instability of L-PBF Co-28Cr-6Mo alloy at elevated temperatures, Addit. Manuf., 44(April), pp. 102025, DOI: 10.1016/j.addma.2021.102025. [41] Chen, Z.W., Phan, M.A.L., Darvish, K. (2017). Grain growth during selective laser melting of a Co–Cr–Mo alloy, J. Mater. Sci., 52(12), pp. 7415–7427, DOI: 10.1007/s10853-017-0975-z. [42] Takaichi, A., Suyalatu., Nakamoto, T., Joko, N., Nomura, N., Tsutsumi, Y., Migita, S., Doi, H., Kurosu, S., Chiba, A., Wakabayashi, N., Igarashi, Y., Hanawa, T. (2013). Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications, J. Mech. Behav. Biomed. Mater., 21, pp. 67–76, DOI: 10.1016/j.jmbbm.2013.01.021. [43] Tonelli, L., Fortunato, A., Ceschini, L. (2020). CoCr alloy processed by Selective Laser Melting (SLM): effect of Laser Energy Density on microstructure, surface morphology, and hardness, J. Manuf. Process., 52, pp. 106–119, DOI: 10.1016/j.jmapro.2020.01.052. [44] Zhang, M., Yang, Y., Song, C., Bai, Y., Xiao, Z. (2018). An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting, J. Alloys Compd., 750, pp. 878–886, DOI: 10.1016/j.jallcom.2018.04.054. [45] Sing, S.L., Huang, S., Yeong, W.Y. (2020). Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced Co-28Cr-6Mo, Mater. Sci. Eng. A, 769, pp. 138511, DOI: 10.1016/j.msea.2019.138511. [46] Bawane, K.K., Srinivasan, D., Banerjee, D. (2018). Microstructural Evolution and Mechanical Properties of Direct Metal Laser-Sintered (DMLS) CoCrMo After Heat Treatment, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 49(9), pp. 3793–3811, DOI: 10.1007/s11661-018-4771-4. [47] Kajima, Y., Takaichi, A., Kittikundecha, N., Nakamoto, T., Kimura, T., Nomura, N., Kawasaki, A., Hanawa, T., Takahashi, H., Wakabayashi, N. (2018). Effect of heat-treatment temperature on microstructures and mechanical properties of Co–Cr–Mo alloys fabricated by selective laser melting, Mater. Sci. Eng. A, 726, pp. 21–31, DOI: 10.1016/j.msea.2018.04.048. [48] Tonelli, L., Boromei, I., Liverani, E., Ceschini, L. (2021). Microstructural evolution induced by heat treatment in the Co28Cr6Mo alloy produced by selective laser melting, Metall. Ital., 113(2), pp. 22–30. [49] Dolgov, N, A., Dikova, T., Dzhendov, D., Pavlova, D., Simov, M. (2016). Mechanical Properties of Dental Co-Cr Alloys Fabricated via Casting and Selective Laser Melting, Sci. Proc. Ii Int. Sci. Conf. Innovations Eng. 2016, 33, pp. 29–33. [50] Liu, F., Zhang, D.Z., Zhang, P., Zhao, M., Jafar, S. (2018). Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting, Materials (Basel), 11(3), DOI: 10.3390/ma11030374.

503

Made with FlippingBook PDF to HTML5