Issue 62
A. Mishra et alii, Frattura ed Integrità Strutturale, 62 (2022) 448-459; DOI: 10.3221/IGF-ESIS.62.31
[4] Isa, M.S.M., Moghadasi, K., Ariffin, M.A., Raja, S., bin Muhamad, M.R., Yusof, F., Jamaludin, M.F., bin Yusoff, N. and bin Ab Karim, M.S., (2021). Recent research progress in friction stir welding of aluminium and copper dissimilar joint: a review. Journal of Materials Research and Technology, 15, pp. 2735-2780. [5] Jesus, J.S., Costa, J.M., Loureiro, A. and Ferreira, J.M., (2018). Assessment of friction stir welding aluminium T-joints. Journal of Materials Processing Technology, 255, pp. 387-399. [6] Ramamurthy, M., Balasubramanian, P., Senthilkumar, N. and Anbuchezhiyan, G., (2022). Influence of process parameters on the microstructure and mechanical properties of friction stir welds of AA2014 and AA6063 aluminium alloys using response surface methodology. Materials Research Express, 9(2), p.026528. [7] Iqbal, M.P., Tripathi, A., Jain, R., Mahto, R.P., Pal, S.K. and Mandal, P., (2020). Numerical modelling of microstructure in friction stir welding of aluminium alloys. International Journal of Mechanical Sciences, 185, p.105882. [8] Sinhmar, S. and Dwivedi, D.K., (2019). Effect of weld thermal cycle on metallurgical and corrosion behavior of friction stir weld joint of AA2014 aluminium alloy. Journal of Manufacturing Processes, 37, pp. 305-320. [9] Leon, J.S., Bharathiraja, G. and Jayakumar, V., (2020). A review on friction stir welding in aluminium alloys. In IOP Conference Series: Materials Science and Engineering 954(1), p. 012007. IOP Publishing. [10] Kochenderfer, M.J. and Wheeler, T.A., (2019). Algorithms for optimization. Mit Press. [11] Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., Hong, Y., Wang, H., Lin, Z. and Johansson, K.H., (2019). A survey of distributed optimization. Annual Reviews in Control, 47, pp. 278-305. [12] Sun, S., Cao, Z., Zhu, H. and Zhao, J., (2019). A survey of optimization methods from a machine learning perspective. IEEE transactions on cybernetics, 50(8), pp. 3668-3681. [13] Zhan, Z.H., Shi, L., Tan, K.C. and Zhang, J., (2022). A survey on evolutionary computation for complex continuous optimization. Artificial Intelligence Review, 55(1), pp. 59-110. [14] Martins, J.R. and Ning, A., (2021). Engineering design optimization. Cambridge University Press. [15] Jin, Y., Wang, H., Chugh, T., Guo, D. and Miettinen, K., (2018). Data-driven evolutionary optimization: An overview and case studies. IEEE Transactions on Evolutionary Computation, 23(3), pp. 442-458. [16] Lan, G., (2020). First-order and stochastic optimization methods for machine learning (p. 123). New York: Springer. [17] Feurer, M. and Hutter, F., (2019). Hyperparameter optimization. In Automated machine learning (pp. 3-33). Springer, Cham. [18] Soydaner, D., (2020). A comparison of optimization algorithms for deep learning. International Journal of Pattern Recognition and Artificial Intelligence, 34(13), p.2052013. [19] Vasant, P., Zelinka, I. and Weber, G.W., (2018). Intelligent computing & optimization. In Conference proceedings ICO p. 804. [20] Fouad, M.M., El-Desouky, A.I., Al-Hajj, R. and El-Kenawy, E.S.M., (2020). Dynamic group-based cooperative optimization algorithm. IEEE Access, 8, pp.148378-148403. [21] Du, Y., Mukherjee, T., Mitra, P. and DebRoy, T., (2020). Machine learning based hierarchy of causative variables for tool failure in friction stir welding. Acta Materialia, 192, pp. 67-77. [22] Du, Y., Mukherjee, T. and DebRoy, T., (2019). Conditions for void formation in friction stir welding from machine learning. npj Computational Materials, 5(1), pp. 1-8. [23] Sandeep, R. and Natarajan, A., (2022). Application of machine learning approaches to predict joint strength of friction stir welded aluminium alloy 7475 and PPS polymer hybrid joint. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p.09544062221090082. [24] Guan, W., Zhao, Y., Liu, Y., Kang, S., Wang, D. and Cui, L., (2022). Force data-driven machine learning for defects in friction stir welding. Scripta Materialia, 217, p.114765. [25] Nadeau, F., Thériault, B. and Gagné, M.O., (2020). Machine learning models applied to friction stir welding defect index using multiple joint configurations and alloys. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(5), pp. 752-765. [26] Ramachandran, K.K., Murugan, N. and Shashi Kumar, S., (2015). Influence of tool traverse speed on the characteristics of dissimilar friction stir welded aluminium alloy, AA5052 and HSLA steel joints. Archives of civil and mechanical Engineering, 15(4), pp. 822-830.
459
Made with FlippingBook PDF to HTML5