Issue 62

J. C. Santos et alii, Frattura ed Integrità Strutturale, 62 (2022) 349-363; DOI: 10.3221/IGF-ESIS.62.25

     '

f

u kG kGA

where

. In this way, the equation of motion can be expressed as follows

2

EI

I

EI

I

  

  

 f

IV

''

 I u Au 

       u f

EIu

f

(14)

kG

kG kGA kGA

d m at d L , we have

Considering this is a problem of free vibration with mass addition as discontinuity

2

EI

I

  

  



IV

 I u Au  ''

     

 u m u x L 

 

(15)

EIu

0

d

d

kG

kG

  x u u ,  x Lx and   n T t t t f

in which u , x , and t are dimensionless parameters, Eqn. (15) is given by

Assuming

2

     2

  

 x

EI

I

x

  

  

 





2

2

4

x IV

 I

  f u A f u  '' x n n

 f u m f u d x n

 

EI u

(16)

1 0

x n

4

2

kG

kG

L

L

L

d

Dividing everything by   2

x n A f , Eqn. (16) is described as

4

2

  

  

f

m

EI

   E I kG A

I

x

  

  u

  u u

 u

IV

n

d

 

 

 

u

(17)

1 1 ''

1 0

4 2

2

2

kG

A L

AL f

L

Af

d

n

n

Furthermore, according to Blevins [59]:

2 4 L

1 4

(18)

2

4

Af

EI

n

Thus, the equation of motion can be given by

2 f I n

2

m

L

  E I kG A

4

  

  

   

  u

  u u

 u x 

IV

d

  d

 

u

1 1 ''

0

(19)

 

4

2

 kGA AL

L

L

and  2 / I A R (radius of rotation of the cross section), we have the dimensionless motion

 

/ E Gk

It is known that

equation of the Timoshenko beam:

 f R m 2 2

2

L

4

  

  

  u

   

 2 1 1

  '' R u u

 u x  

IV

n

d

  d

 

(20)

u

0

4

2

 kG AL

L

L



     

    1/ L .

where

Neglecting the terms underlined in Eqn. (20), the dimensionless beam motion equation is obtained on the Euler-Bernoulli theory that considers a kinematic hypothesis formulated without considering the shear and the rotational beam effects. In Eqn. (21), the motion of the Euler-Bernoulli beam is described.

2

m

L

4

  

  

  

 u x 

IV u u

d

  d

0

(21)

4

AL

L

353

Made with FlippingBook PDF to HTML5