Issue 62
A. S. Yankin et alii, Frattura ed Integrità Strutturale, 62 (2022) 180-193; DOI: 10.3221/IGF-ESIS.62.13
max
max min mean min
I
I
I
I
I
0
2
2
1
1
1
mean
2
I
(10)
2
1
mean
1 A
A I
4 2
4
2 B
Under static tension:
max
min max min
I
I
I
I
0
2
2
1
1
1 3
mean
mean
2
;
I
I
(11)
1
2
1
1 1
1 A A
2
2
3
3
B
B
B
where τ b is the ultimate shear strength. Under uniaxial cyclic symmetric torsion:
min
mean max min mean
I
I
I
I
I
0
2
2
1
1
1
max
2
a
I
(12)
2
2
2 a
2
1 A
A
0 ' 2 b f N
3
3
2
where τ′ f , b 0 are material parameters determined from the fatigue curve for symmetrical cyclic torsion. Under uniaxial cyclic symmetric tension-compression:
min
mean mean
I
I
I
0
2
2
1
1 3
min max
max
2
a
a
I
I
I
(13)
;
1
1
2
a
1
1
1 A A
a
1
1
N
2 N
N
b
b
b
' 3 2
'
' 3 2
0
1
0
f
f
f
where σ′ f , b 1 are material parameters determined from the fatigue curve at symmetrical cyclic tension-compression. As a result, the model looks like this:
max
min
mean
max min
I
I
I
I
I
1
1
1 1
mean
2
2
2
1
1
I
1
(14)
0 ' 2 b f N
1
2 N
N
b
b
2
2 B
2
'
' 3 2
3
1
0
B
B
f
f
183
Made with FlippingBook PDF to HTML5