Issue 62

M. Baruah et alii, Frattura ed Integrità Strutturale, 62 (2022) 126-133; DOI: 10.3221/IGF-ESIS.62.09

R EFERENCES

[1] Mrowka-Nowotnik, G., Sieniawski, J., Wierzbinska M. (2007). Intermetallic phase particles in 6082 aluminium alloy, Archives of Materials Science and Engineering, 28(2), pp. 69-76. [2] Wang, L., Apelian, D., Makhlouf, M., (1999). Iron-bearing compounds in Al-Si diecasting alloys: Morphology and conditions under which they form, Trans. Am. Found. Soc., 107, pp. 231-238. [3] Mascre, C. (1955). Fonderie, 108, pp. 4330-4336. [4] Mrowka-Nowotnik, G., Sieniawski, J., Nowotnik, A. (2009). Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy, Journal of achievements in materials and manufacturing Engineering, 32(2), pp. 1 9. [5] Werinos, M., Antrekowitsch, H., Ebner, T., Prillhofer, R., Curtin, W.A., Uggowitzer, P.J., Pogatscher, S. (2016). Design strategy for controlled natural aging in Al-Mg-Si alloys, Acta Mater., 118, pp. 296-305. DOI: 10.1016/j.actamat.2016.07.048 [6] Glöckel, F., Uggowitzer, P.J., Felfer, P., Pogatscher, S., Höppel, H.W. (2019). Influence of Zn and Sn on the precipitation behavior of new Al-Mg-Si alloys, Materials, 12(16), pp. 2547. DOI: 10.3390/ma12162547 [7] Tu, W., Tang, J., Zhang, Y., Cao, L., Ma, L., Zhu, Q., Ye, L., Liu, S. (2019). Influence of Sn on the precipitation and hardening response of natural aged Al-0.4Mg-1.0Si alloy artificial aged at different temperatures, Materials Science and Engineering: A., 765, pp. 138250. DOI: 10.1016/j.msea.2019.138250 [8] Zhang, X., Liu, M., Sun, H., Banhart J. (2019). Influence of Sn on the age hardening behavior of Al-Mg-Si alloys at different temperatures, Materialia 8, pp. 100441. DOI:10.1016/j.mtla.2019.100441 [9] Ma, L., Tang, J., Tu, W., Ye, L., Jiang, H., Zhan, X., Zhao, J. (2020). Effect of a trace addition of Sn on the aging behavior of Al-Mg-Si alloy with a different Mg/Si ratio, Materials, 13(4), pp. 913. DOI: 10.3390/ma13040913 [10] He, C., Luo, B., Zheng, Y., Yin, Y., Bai, Z., Ren, Z. (2019). Effect of Sn on microstructure and corrosion behaviours of Al-Mg-Si alloys, Materials Characterization, 156, pp. 109836. DOI: 10.1016/j.matchar.2019.109836 [11] Baruah, M., Borah, A. (2022). Structure–Property Correlation of Al–Mg–Si Alloys Micro-alloyed with Sn, Inter Metalcast., 16, pp. 924–944. DOI: 10.1007/s40962-021-00652-1 [12] Wang, Y., Guo, X., Yang, W., Zhang, J. (2017). Morphology and properties of Mg 2 Si and Mg 2 (Si x Sn 1 -x) reinforcements in magnesium alloys, Material Science and Technology, 33(15), pp. 1811-1818. DOI: 10.1080/02670836.2017.1322370 [13] Xuehong, X., Deng, Y., Shuiqing, C., Xiaobin, G., (2020). Effect of interrupted ageing treatment on the mechanical properties and intergranular corrosion behavior of Al-Mg-Si alloys, Journal of Materials Research and Technology, 9(1), pp. 230-241. DOI: 10.1016/j.jmrt.2019.10.050 [14] Hui-zhong LI., Ze-xiao ZHU., Xiao-peng LIANG., Peng-wei LI., Ye-long QI., Feng LV., Lan HUANG. (2017). Effect of T6-treatments on microstructure and mechanical properties of forged Al-4.4Cu-0.7Mg-0.6Si alloy, Transactions of Nonferrous Metals Society of China, 27(12), pp. 2539-2547. DOI: 10.1016/S1003-6326(17)60282-6 [15] Kumar, N., Owolabi, G.M., Jayaganthan, R., Goel S. (2018). Correlation of fracture toughness with microstructural features for ultrafine ‐ grained 6082 Al alloy, Fatigue and Fracture of Engineering Materials and Structures, 41(9), pp. 1884-1899. DOI: 10.1111/ffe.12828.

133

Made with FlippingBook PDF to HTML5