PSI - Issue 59
Olha Zvirko et al. / Procedia Structural Integrity 59 (2024) 120–124 Olha Zvirko / Structural Integrity Procedia 00 (2019) 000 – 000
124
5
Draft Resolution of the Verkhovna Rada of Ukraine on the development of hydrogen energy in order to ensure the economic and energy security of Ukraine, No. 8258 dated 02.12.2022. https://itd.rada.gov.ua/billInfo/Bills/Card/40968 EHB. The European Hydrogen Backbone (EHB) initiative. https://ehb.eu/ Haeseldonckx, D., D’haeseleer , W., 2007. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. International Journal of Hydrogen Energy 32(10 – 11), 1381 – 1386. REPowerEU plan. https://energy.ec.europa.eu/topics/energy-systems-integration/hydrogen_en Gredil, M. I., 2008. Operating degradation of gas-main pipeline steels. Metallofizika i Noveishie Tekhnologii 30(SPEC. ISS.), 397 – 406. Hredil, M., Tsyrulnyk, O., 2010. Inner corrosion as a factor of in-bulk steel degradation of transit gas pipelines. 18th European Conference on Fracture: Fracture of Materials and Structures from Micro to Macro Scale (ECF18), Dresden, Germany, paper #486. Hoschke, J., Chowdhury, M. F. W., Venezuela, J., Atrens, A., 2023. A review of hydrogen embrittlement in gas transmission pipeline steels. Corrosion Reviews 41(3), 277 – 317. Joo, M.S., Suh, D.W., Bhadeshia H.K.D.H., 2013. Mechanical anisotropy in steels for pipelines. ISIJ international 53.8, 1305 – 1314. Kharchenko, L. E., Kunta, O. E., Zvirko, O. I., Savula, R. S., Duryahina, Z. A., 2016. Diagnostics of hydrogen macrodelamination in the wall of a bent pipe in the system of gas mains. Materials Science 51 (4), 530 – 537. Koyama, M., Rohwerder, M., Tasan, C. C., Bashir, A., Akiyama, E., Takai, K., Raabe, D., Tsuzaki, K., 2017. Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation. Materials Science and Technology 33:13, 1481 – 1496. Kryzhanivs’kyi, E.І., Hrabovs’kyi, R.S., Vytyaz’, О.Y., 2019. I nfluence of the Geometry of Corrosion-Fatigue Cracks on the Residual Service Life of Objects Intended for Long-Term Operation. Materials Science 54 (5), 647 – 655. Martin, M. L., Sofronis, P., 2022. Hydrogen-induced cracking and blistering in steels: A review. Journal of Natural Gas Science and Engineering 101, 104547. Mohtadi-Bonab, M.A., Eskandari, M., 2017. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel. Engineering Failure Analysis 79, 351e60. Nykyforchyn, H., Tsyrulnyk, O., Zvirko, O., 2018. Electrochemical fracture analysis of in-service natural gas pipeline steels. Procedia Structural Integrity 13, 1215 – 1220. Nykyforchyn, H., Tsyrulnyk, O., Zvirko, O., Hredil, M., 2020. Role of hydrogen in operational degradation of pipeline steel. Procedia Structural Integrity 28, 896 – 902. Nykyforchyn, H., Unigovskyi, L., Zvirko, O., Tsyrulnyk, O., Krechkovska, H., 2021a. Pipeline durability and integrity issues at hydrogen transport via natural gas distribution network. Procedia Structural Integrity 33, 646 – 651. Nykyforchyn, H., Zvirko, O., Dzioba, I., Krechkovska, H., Hredil, M., Tsyrulnyk, O., Student, O., Lipiec, S., Pala, R., 2021b. Assessment of operational degradation of pipeline steels. Materials 14(12), 3247. Okipnyi, I., Poberezhny, L., Zapukhliak, V., Hrytsanchuk, A., Poberezhna, L., Stanetsky, A., Kravchenko, V., Rybitskyi, I., 2020. Impact of longterm operation on the reliability and durability of transit gas pipelines. Strojnicky Casopis 70(1), 115 – 126. Pluvinage, G., Toth, L., Capelle, J., 2021. Effects of hydrogen addition on design, maintenance and surveillance of gas networks. Processes 9(7), 1219. Project of the Recovery Plan of Ukraine. National Council for the Recovery of Ukraine from the Consequences of the War: Materials of the Working Group "Energy Security". July 2022. https://www.kmu.gov.ua/storage/app/sites/1/recoveryrada/ua/energy-security.pdf Shinohara, Y., Besson, J., Madi, Y., 2012. Anisotropic damage behavior in high-strength line pipe steels. International Journal of Offshore and Polar Engineering 22(1), 83 – 89. Shtoyko, I., Toribio, J., Kharin, V., Hredil, M., 2019. Prediction of the residual lifetime of gas pipelines considering the effect of soil corrosion and material degradation. Procedia Structural Integrity 16, 148 – 152. Voloshyn, V.A., Zvirko, O.I., Sydor, P.Y., 2015. Influence of the compositions of neutral soil media on the corrosion cracking of pipe steel. Materials Science 50(5), 44 – 47. Zvirko, O. I., 2021. In-service degradation of structural steels (a survey). Materials Science 57(3), 319 – 330. Zvirko, О.І., Кryzhanivskyi, E.І., Nykyforchyn, H.М., Krechkovska, H.V., 2021. Methods for the evaluation of corrosion -hydrogen degradation of steels of oil-and-gas pipelines. Materials Science 56(5), 585 – 592. Zvirko, O., 2022. Anisotropy of hydrogen embrittlement in ferrite-pearlitic steel considering operational degradation. Procedia Structural Integrity 42, 522 – 528. Zvirko, O. I., Nykyforchyn, H. M., Tsyrulnyk, O. T., Voloshyn, V. A., Venhrynyuk, O. I., 2022. In-service degradation of structural steels under cyclic loading. Materials Science 58(2), 222 – 228.
Made with FlippingBook - Online Brochure Maker