PSI - Issue 53

J.M. Parente et al. / Procedia Structural Integrity 53 (2024) 221–226 Author name / Structural Integrity Procedia 00 (2019) 000–000

226

6

Kolken, H. M. A., A. F. Garcia, A. D. Plessis, A. Meynen, C. Rans, L. Scheys, M. J. Mirzaali and A. A. Zadpoor (2022). "Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials." Acta Biomater 138 : 398-409. Lira, C., F. Scarpa and R. Rajasekaran (2011). "A Gradient Cellular Core for Aeroengine Fan Blades Based on Auxetic Configurations." Journal of Intelligent Material Systems and Structures 22 (9): 907-917. Lvov, V. A., F. S. Senatov, A. M. Korsunsky and A. I. Salimon (2020). "Design and mechanical properties of 3D-printed auxetic honeycomb structure." Materials Today Communications 24 : 101173. Lvov, V. A., F. S. Senatov, A. A. Stepashkin, A. A. Veveris, M. D. Pavlov and A. A. Komissarov (2020). "Low-cycle fatigue behavior of 3D printed metallic auxetic structure." Materials Today-Proceedings 33 : 1979-1983. Ne č emer, B., J. Klemenc and S. Glodež (2020). "The computational LCF- analyses of chiral and Re-entrant auxetic structure using the direct cyclic algorithm." Materials Science and Engineering: A 789 : 139618. Ne č emer, B., J. Klemenc, F. Zupani č and S. Glodež (2022). "Modelling and predicting of the LCF-behaviour of aluminium auxetic structures." International Journal of Fatigue 156 : 15. Ne č emer, B., J. Kramberger and S. Glodež (2022). "Fatigue crack growth in the re-entrant auxetic structure." Procedia Structural Integrity 39 : 34 40. Ne č emer, B., J. Kramberger, T. V uherer and S. Glodež (2019). "Fatigue crack initia tion and propagation in re-entrant auxetic cellular structures." International Journal of Fatigue 126 : 241-247. Ne č emer, B., T. Vuherer, S. Glodež and J. Kramberger (2022). "Fatigue behaviour of re-entrant auxetic structures made of the aluminium alloy AA7075-T651." Thin-Walled Structures 180 : 109917. Padmakumar, M. (2020). "Additive Manufacturing of Tungsten Carbide Hardmetal Parts by Selective Laser Melting (SLM), Selective Laser Sintering (SLS) and Binder Jet 3D Printing (BJ3DP) Techniques." Lasers in Manufacturing and Materials Processing 7 (3): 338-371. Photiou, D., S. Avraam, F. Sillani, F. Verga, O. Jay and L. Papadakis (2021). "Experimental and Numerical Analysis of 3D Printed Polymer Tetra-Petal Auxetic Structures under Compression." Applied Sciences-Basel 11 (21): 10362. Ren, X., R. Das, P. Tran, T. D. Ngo and Y. M. Xie (2018). "Auxetic metamaterials and structures: a review." Smart Materials and Structures 27 (2): 023001. Tomažin č i č , D., B. Ne č emer, M. Vesenjak and J. Klemenc (2019). "Low ‐ cycle fatigue life of thin ‐ plate auxetic cellular structures made from aluminium alloy 7075 ‐ T651." Fatigue & Fracture of Engineering Materials & Structures 42 (5): 1022-1036. Ulbin, M., M. Borovinsek, M. Vesenjak and S. Glodez (2020). "Computational Fatigue Analysis of Auxetic Cellular Structures Made of SLM AlSi10Mg Alloy." Metals 10 (7): 945. Xu, Y. D., H. Z. Zhang, E. Schlangen, M. Lukovic and B. Savija (2020). "Cementitious cellular composites with auxetic behavior." Cement & Concrete Composites 111 : 103624. Yousuf, M. H., W. Abuzaid and M. Alkhader (2020). "4D printed auxetic structures with tunable mechanical properties." Additive Manufacturing 35 : 101364. Yu, X., J. Zhou, H. Liang, Z. Jiang and L. Wu (2018). "Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review." Progress in Materials Science 94 : 114-173.

Made with FlippingBook Ebook Creator