Issue 52
O. Kryvyi et alii, Frattura ed Integrità Strutturale, 52 (2020) 33-50; DOI: 10.3221/IGF-ESIS.52.04
2
j
1
3 3 j       
3 0 1 2 3 [ , , , ] ( 1)    
j k 
j
,
1, 2
j
k
0
  
2
2
 
7 0 1 2 3 [ , , , ]     
8 0 1 2 3 [ , , , ]     
j 
j 
θ (  
j 
,
θ ( ) z
z
)
,
02 3 0
02 3 0
2
2
2
1 ) , j  
0,1, 2 j  ,
j 
j 
θ (  
θ ( ) z
z
1
1
2
j   j
 
b b
a a
(
)
2
2
13 33   c
  
j 
(   c
 
j 
j
),
,
0,1, 2
j
j
3 2 j
1
1
2
1
1
2 2 0 33 44 0 ( c c    
11 33 13 13         ( ( c c c c
44 2 ))) c 
11 44  
c c
22    
,
0
,
02
12
2 1 0  
b
a
(
)
1
3 13 44     ( ) c c   
3 44 , 
1 44 , 
3 11 1 13 44 ( ) c c         , c 
 
c 
c 
b
c
b
a
a
,
1
1 33
2
1
2
0 ( )  
   
3 ( )  
   
2
1
2
1
1 3 ( ) , k k
66 44 ( ) , c c
 (
Constants j 
1, 2 j  ) are solutions of equations
  
13 13  
44 2 ) c   
  
11 44     c c
4
2
( ) [ ( c c  
]( ) 
c c
c c
0.
j
j
33 44
11 33
, j j  
0,1, 2, 3
satisfy the differential equations:
The functions
  1 2 3 , , z       0, j
P
0
(A.4)
j
) , 
2 2         , 2  ( ) (  )
θ ( )( ) z  
)( )  
2 3
2 2
2
2
θ ( ) P z P 
θ (  
θ (  
.
z P
P
z
j
j
j
j
j
j
j
j
1
3 ( ),   As a result, we obtain
Following [15] we let's pass in the Eqns. (A.4) to the space of generalized functions
,( j j  
0,1, 2, 3)
boundary value problems for the functions
1
1 2 3 [ , , ]        j 
  k
k
1 3
3
(   
P
f
f
( ) z
,
,
)
(A.5)
j
j
j
j
j
2
k
0
 
  
0 1 2 3          [ , , , j
0 1 2 3          [ , , , j
3 ( ), 
 
j 
( , ), x y
j
]
]
1,8,
j
(A.6)
k  with generalized ones k   . Applying the
j    by replacing in operators
j   ordinary derivatives
We obtain operators
3 ( ),   by parameter
three-dimensional Fourier transform to Eqns. (A.5) we obtain the Riemann problem in the space
3  to determine the transformants of the functions , j j  
0,1, 2, 3
.
p         
(A.7)
p
, Q j
0, 3
j
j
j
46
Made with FlippingBook Publishing Software