Issue 52

O. Kryvyi et alii, Frattura ed Integrità Strutturale, 52 (2020) 33-50; DOI: 10.3221/IGF-ESIS.52.04

2

j

1

3 3 j       

3 0 1 2 3 [ , , , ] ( 1)    

j k 

j

,

1, 2

j

k

0

  

2

2

 

7 0 1 2 3 [ , , , ]     

8 0 1 2 3 [ , , , ]     

j 

j 

θ (  

j 

,

θ ( ) z

z

)

,

02 3 0

02 3 0

2

2

2

1 ) , j  

0,1, 2 j  ,

j 

j 

θ (  

θ ( ) z

z

1

1

2

j   j

 

b b

a a

(

)

2

2

13 33   c

  

j 

(   c

 

j 

j

),

,

0,1, 2

j

j

3 2 j

1

1

2

1

1

2 2 0 33 44 0 ( c c    

11 33 13 13         ( ( c c c c

44 2 ))) c 

11 44  

c c

22    

,

0

,

02

12

2 1 0  

b

a

(

)

1

3 13 44     ( ) c c   

3 44 , 

1 44 , 

3 11 1 13 44 ( ) c c         , c 

 

c 

c 

b

c

b

a

a

,

1

1 33

2

1

2

0 ( )  

   

3 ( )  

   

2

1

2

1

1 3 ( ) , k k

66 44 ( ) , c c

 (

Constants j 

1, 2 j  ) are solutions of equations

  

13 13  

44 2 ) c   

  

11 44     c c

4

2

( ) [ ( c c  

]( ) 

c c

c c

0.

j

j

33 44

11 33

, j j  

0,1, 2, 3

satisfy the differential equations:

The functions

  1 2 3 , , z       0, j

P

0

(A.4)

j

) , 

2 2         , 2  ( ) (  )

θ ( )( ) z  

)( )  

2 3

2 2

2

2

θ ( ) P z P 

θ (  

θ (  

.

z P

P

z

j

j

j

j

j

j

j

j

1

3 ( ),   As a result, we obtain

Following [15] we let's pass in the Eqns. (A.4) to the space of generalized functions

,( j j  

0,1, 2, 3)

boundary value problems for the functions

1

1 2 3 [ , , ]        j 

  k

k

1 3

3

(   

P

f

f

( ) z

,

,

)

(A.5)

j

j

j

j

j

2

k

0

 

  

0 1 2 3          [ , , , j

0 1 2 3          [ , , , j

3 ( ), 

 



j 

( , ), x y

j

]

]

1,8,

j

(A.6)

k  with generalized ones k   . Applying the

j    by replacing in operators

j   ordinary derivatives

We obtain operators

3 ( ),   by parameter

three-dimensional Fourier transform to Eqns. (A.5) we obtain the Riemann problem in the space

3  to determine the transformants of the functions , j j  

0,1, 2, 3

.

p         

(A.7)

p

, Q j

0, 3

j

j

j

46

Made with FlippingBook Publishing Software