Issue 52
O. Kryvyi et alii, Frattura ed Integrità Strutturale, 52 (2020) 33-50; DOI: 10.3221/IGF-ESIS.52.04
[22] Haojiang Ding, Weiqiu Chen, L. Zhang (2006). Elasticity of Transversely Isotropic Materials Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. DOI: 10.1007/1-4020-4034-2.
A PPENDIX A: C ONSTRUCTION OF A DISCONTINUOUS SOLUTION AND SINGULAR INTEGRAL RELATIONS FOR A PIECEWISE HOMOGENEOUS TRANSVERSELY ISOTROPIC BODY IN 3 ( )
R
3 3 3 { } { } j j u u and temperature T using the Duhamel
elative to the components of the displacement vector
0, z system of differential equations
Neumann relations [21], we obtain, with
1 2 3 , ,
1 2 3 , , 0, T z
D
, T P
0
(A.1)
u β
where
3 L P 1 2 3 [ , , ] { } , [ , , ] kj D
2 3
2
2 2
, y z , x
1 2 3 1 (
),
1
2
3
2
2
2
2 ) ,
2 ) ,
11 11 1 66 2 44 3 L c c c
( c
( c
jk L L
12 L c
13 L c
,
kj
12 66 12
44 13 13
2
2
2
2 ) ,
2
2
2
22 66 1 11 2 44 3 L c c c
( c
33 55 1 44 2 33 3 L c c c
23 L c
,
,
44 23 23
kj
) , kj
) , z c
1 3
θ (
j
j
θ (
c
z c
z c
θ ( ) z
, c c
, c c
c
,
θ ( )
kj
j
23 13 55 44 22 11
T
1
2 ,
1 2 3 { , , } ,
j
j
θ (
j
j
j
θ (
j
,
,
θ ( ) z
z
θ ( ) z
z
)
)
β
1 11 1 12 2 13 3 , c c c
3 13 1 23 2 33 3 c c c ,
k j c elastic constants, respectively, of the upper and lower half-spaces. Other components of the vector v from (1.2) can be found by the formulas 1 13 1 1 2 2 33 3 3 3 2 44 3 2 2 3 3 44 1 3 3 1 8 3 , , , z c u u с u T c u u c u u k T
(A.2)
Based on the representation of the solutions of Eqns. (A.1) for a homogeneous space [22], the components of the vector v are
j
0 1 2 3 [ , , , ], j
1,8, z
(A.3)
j
0
Here we use the notation
0 1 2 3 [ , , , ] θ ( ) [ , , , ] θ ( j z 0 1 2 3
z
0 1 2 3 ) [ , , , ] j
j
2
2
k
1 3 k
2 3
1 0 1 2 3 [ , , , ]
6 0 1 2 3 [ , , , ]
,
,
k
k
k
k
0
0
2
j
2
2
), k k
44 3 3 j (( 1) k c 1 23
1 1, k j
1 0 1 2 3 [ , , , ]
1, 2
j
1
k
0
45
Made with FlippingBook Publishing Software