Issue 49
D. Oshmarin et alii, Frattura ed Integrità Strutturale, 49 (2019) 800-813; DOI: 10.3221/IGF-ESIS.49.13
[24] Guo, K.M. and Jiang, J. (2014). Independent modal resonant shunt for multimode vibration control of a truss-cored sandwich panel, International Journal of Dynamics and Control, 2, pp. 326-334. DOI: 10.1007/s40435-013-0036-7. [25] Trindade, M.A. and Maio, C.E.B. (2008). Multimodal passive vibration control of sandwich beams with shunted shear piezoelectric materials, Smart Materials and Structures, 17, art. 055015. DOI: 10.1088/0964-1726/17/5/055015. [26] Spadoni, A., Ruzzene, M. and Cunefare, K. (2009). Vibration and Wave Propagation Control of Plates with Periodic Arrays of Shunted Piezoelectric Patches, Journal of Intelligent Material Systems and Structures, 20(5), pp. 979-990. DOI: 10.1177/1045389X08100041. [27] Casadei, F., Beck, B., Cunefare, A. and Ruzzene, M. (2012). Vibration control of plates through hybrid configurations of periodic piezoelectric shunts, Journal of Intelligent Material Systems and Structures, 23(10), pp. 1169-1177. DOI: 10.1177/1045389X12443014. [28] Berardengo, M., Manzoni, S., Conti, A.M. (2017). Multi-mode passive piezoelectric shunt damping by means of matrix inequalities, Journal of Sound and Vibration, 405(29), pp. 287-305. DOI: 10.1016/j.jsv.2017.06.002. [29] Kligman, E.P., Matveenko, V.P. (1997). Natural Vibration Problem of Viscoelastic Solids as Applied to Optimization of Dissipative Properties of Constructions, International Journal of Vibration and Control, 3(1), pp. 87-102. DOI: 10.1177/107754639700300107. [30] Kligman, E.P., Matveenko, V.P., Sevodina, N.V. (2010) Determination of natural vibrations of piecewise homogeneous viscoelastic bodies using the ANSYS software package, Computational Continuum Mechanics , 3(2), pp. 46-54. DOI: 10.7242/1999-6691/2010.3.2.16. [31] Parton, V.Z. and Kudryavtsev, B.A. (1988). Electro-magnetoelasticity: Piezoelectrics and Electrically Conductive Solids, New York: Gordon and Breach Science Publishers Ltd. ISBN-13: 978-2881246715. [32] Karnaukhov, V.G. and Kirichok, I.F. (1988). Electrothermal viscoelasticity, Kiev: Nauk. Dumka. [33] Matveenko, V.P., Oshmarin, D.A., Sevodina, N.V. and Iurlova, N.A. (2016). Natural vibration problem for electroviscoelstic body with external electric circuits and finite-element relations for its numerical implementation, Computational Continuum Mechanics, 9(4), pp. 476-485. DOI: 10.7242/1999-6691/2016.9.4.40. [34] Iurlova, N., Sevodina, N., Oshmarin, D. and Iurlov, M. (2019). Algorithm for solving problems related to the natural vibrations of electro-viscoelastic structureswith shunt circuits using ANSYS data, International Journal of Smart and Nano Materials, 10(2), pp. 156-176. DOI: 10.1080/19475411.2018.1542356. [35] Matveenko, V.P., Iurlova, N.A., Oshmarin, D.A., Sevodina, N.V. and Iurlov, M.A. (2018), An approach to determination of shunt circuits parameters for damping vibrations, International Journal of Smart and Nano Materials, 9(2), pp. 135-149. DOI: 10.1080/19475411.2018.1461144. [36] Sevodina, N.V., Yurlova, N.A. and Oshmarin, D.A. (2015). The optimal placement of the piezoelectric element in a structure based on the solution of the problem of natural vibrations, Solid State Phenomena, 243, pp.67-74. DOI: 10.4028/www.scientific.net/SSP.243.67. [37] Oshmarin, D.A., Iurlova, N.A., Sevodina, N.V. and Iurlov, M.A. (2019). Algorithm for the layout of a piezoelectric element in an elastic medium providing the maximal piezoelectric effect within a specified frequency range, International Journal of Smart and NanoMaterials, DOI: 10.1080/19475411.2019.1576070.
813
Made with FlippingBook - Online catalogs