Issue 49
D. Oshmarin et alii, Frattura ed Integrità Strutturale, 49 (2019) 800-813; DOI: 10.3221/IGF-ESIS.49.13
[2] Hagood, N.W., Von Flotow, A. (1991). Damping of structural vibrations with piezoelectric materials and passive electrical networks, Journal of Sound and Vibration 146, pp.243–268. DOI: 10.1016/0022-460X(91)90762-9. [3] Moheimani, S.O.R., Fleming, A.J. (2006). Piezoelectric transducers for vibration control and damping , Springer Science & Business Media. DOI: 10.1007/1-84628-332-9. [4] Viana, F.A.C., Valder, S.Jr. (2006). Multimodal Vibration Damping through Piezoelectric Patches and Optimal Resonant Shunt Circuits, Journal of the Brazilian Society of Mechanical Sciences and Engineering, XXVIII(3), pp.293 310. DOI: 10.1590/S1678-58782006000300007. [5] Cheng, T.H., Oh, I.K. (2009). A current-flowing electromagnetic shunt damper for multi-mode vibration control of cantilever beams, Smart Materials and Structures, 18(9), art. 095036. DOI: 10.1088/0964-1726/18/9/095036. [6] Behrens, S., Moheimani, S.O.R. (2000). Optimal resistive elements for multiple mode shunt damping of a piezoelectric laminate beam, Proc. of the 39th IEEE Conf. on Decision and Control, 4, pp.4018-4023. DOI: 10.1109/CDC.2000.912343. [7] Fleming, A.J., Moheimani, S.O.R. (2003). Adaptive piezoelectric shunt damping, Smart Materials and Structures, 12(1), pp.36–48. DOI: 10.1088/0964-1726/12/1/305. [8] Behrens S, Moheimani, S.O.R. and Fleming, A.J. (2003). Multiple mode current flowing passive piezoelectric shunt controller, Journal of Sound and Vibration, 266(5), pp.929–942. DOI: 10.1016/S0022-460X(02)01380-9. [9] Behrens, S. and Moheimani, S.O.R. (2002). Current flowing multiple mode piezoelectric shunt dampener, SPIE Proceedings Series, 4697(24), pp.217-226. DOI: 10.1117/12.472658. [10] Wu, S.Y. and Bicos, A.S. (1997). Structural vibration damping experiments using improved piezoelectric shunts, SPIE Proceedings Series, 3045, pp. 40–50. DOI: 10.1117/12.274217. [11] Wu, S.Y. (1999). Multiple PZT transducers implemented with multiple-mode piezoelectric shunting for passive vibration damping, SPIE Proceedings Series, 672, pp. 112–122. DOI: 10.1117/12.349774. [12] Wu, S.Y. (1998). Method for multiple mode shunt damping of structural vibration using a single PZT transducer, SPIE Proceedings Series, 3327, pp.159–168. DOI: 10.1117/12.310680. [13] Hollkamp, J.J. (1994). Multimodal passive vibration suppression with piezoelectric materials and resonant shunts, Journal of intelligent material systems and structures, 5, pp. 49–56. DOI: 10.1177/1045389X9400500106. [14] Yan, L., Lallart, M. and Guyomar, D. (2014). Multimodal nonlinear damping technique using spatial filtering, Journal of Intelligent Material Systems and Structures, 25(3), pp. 308–320. DOI: 10.1177/1045389X13493355. [15] Goldstein, A. (2011). Self-Tuning Multimodal Piezoelectric Shunt Damping, J. Braz. Soc. Mech. Sci. & Eng., XXXIII(4), pp. 428-436. DOI: 10.1590/S1678-58782011000400006. [16] Vidoli, S and dell’Isola, F. (2001). Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks, European Journal of Mechanics/A Solids, 20, pp. 435–456. DOI: 10.1016/S0997-7538(01)01144-5. [17] Porfri, M., dell’Isola, F. and Frattale, M.F.M. (2004). Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers, International Journal of Circuit Theory and Applications, 32, pp. 167–198. DOI: 10.1002/cta.273. [18] dell’Isola, F., Henneke, E.G. and Porfiri, M. (2003). Piezo-electromechanical structures: new trends towards the multimodal passive vibration control, SPIE Proceedings Series, 5052, pp. 392-402. DOI: 10.1117/12.483803. [19] Maurini, C., dell’Isola, F. and Del Vescovo, D. (2004). Comparison of piezoelectronic networks acting as distributed vibration absorbers, Mechanical Systems and Signal Processing, 18(5), pp. 1243-1271. DOI: 10.1016/S0888-3270(03)00082-7. [20] Giorgio, I., Culla, A. and Del Vescovo, D. (2009). Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network, Archive of Applied Mechanics, 79(9), pp. 859–879. DOI: 10.1007/s00419-008-0258-x. [21] Lossouarn, B., Aucejo, M., and Deü, J.F. (2015). Multimodal coupling of periodic lattices and application to rod vibration damping with a piezoelectric network, Smart Materials and Structures, 24 (4), art. 045018. DOI: 10.1088/0964-1726/24/4/045018. [22] Lossouarn, B., Aucejo, M., and Deü, J.F. (2015). Multimodal vibration damping through a periodic array of piezoelectric patches connected to a passive network, Smart Materials and Structures, 24 (11), art. 115037. DOI: 10.1088/0964-1726/24/11/115037. [23] Casadei, F., Ruzzene, M., Dozio, L. and Cunefare, K.A. (2010). Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates, Smart Materials and Structures, 19(1), art.015002. DOI: 10.1088/0964-1726/19/1/015002.
812
Made with FlippingBook - Online catalogs