Issue 49
V. Matveenko et alii, Frattura ed Integrità Strutturale, 49 (2019) 225-242; DOI: 10.3221/IGF-ESIS.49.23
1 2
x x 2
1 4 2
2
2
18 1 x k
2 f x
x
13
f x x x 3 6
3 1 2 1 x
f x x x
4
4
1
(39)
3
4
1 1 x 1 1
x x x x 2 1
2
2
2
x x
k
;
1
0
2
4
1 4
1 1 x 2 k
x
x x
0
1
k
2
x
1
x x x 1 4
2
2
1
4 k 1 x
1
k
2
2
3
k
x
x
1
1
x
x x 2 5 2 1
3
2
3
2 x x
k
u to the functions
Moreover, the results of these transformations is a set of equations, which relate the function k
w v
, k k
and their derivatives
ì ïï
2
( x x - 1
)
d w x
dw x
( )
( )
( x x 2
k
k
)
( 4 2 1 x x )
=
-
+ -
-
u x
) íï - + + ïî 4 2 2
1
( )
k
2
( ) ( x x k S S a 2 1
dx
dx
ü ùïï ú ý ï ú ûïþ
é ê ë
dv x
( )
( x x é ù - - + + + + - - ê )( 1 1 ) ( k S ) 1 1 ( ) w x kSx x ( 2 4 2 a a
k
( + - + ) ( 2 1 2 k x S v x ) ( )
(40)
)
1
ê ë
ú û
k
k
dx
Eqn. (38) is independent of (39) and represents a linear differential equation of the fourth order with respect to the function k w . Eqn. (39) can be considered as a differential equation of the second order with respect to the function k v with right –hand side depending on k w . Such a peculiarity of the differential Eqns. (28) and the obtained relation (30) allows us to determine the sequence of constructing partial solutions for functions , , k k k w v u . The hang of this sequence can be outlines as follows. First, from the solution of Eqn. (38) we obtain four partiсular solutions (1) (2) (3) (4) , , , k k k k w w w w , written as
k
k
1
1
0 m
m
m
(1) w x
(1) A x m
(2) w x
(2) A x m
2
2
,
,
k
k
m
0
(41)
k
k
1
1
m
m
A B x x (3) (3) ln
A B x x (4) (4) ln
(3) w x
(4) w x
2
2
,
k
m
m
k
m
m
m
m
0
0
(1)
(2)
(3)
(4)
(3)
(4)
, m m m A A A A B B can be determined and calculated E-resource (www. , , , , m m m
where the coefficients
icmm.ru/compcoeff). Then substituting the obtained particular solutions (1) (2) (3) (4) , , , k k k k w w w w
into the right-hand side of Eqn. (28. b) and v v v v , which can be written as
solving it as an inhomogeneous equation we arrive at four partial solutions (1) (2) (3) (4) , , , k k k k
é ê ê ê ë
ù ú ú ú û
é ê ê ê ë
ù ú ú ú û
æ ç ç ç è
ö ÷ ÷ ÷ ø
æ ç ç ç è
ö ÷ ÷ ÷ ø
+
-
k
k
1
1
¥ å
¥ å
+
+
m
m
(1) v x
(2) v x
(1) P x m
(2) P x m
2
2
=
=
,
,
( )
( )
k
k
=
=
m
m
0
0
ì ï ï ï ï ï ï î
ü ï ï ï ý ï ï ï þ
( ) P D x x æ ù + í (3) (3) ln m m
ö- ÷
k
1
¥ å
2 ç - ÷ ç ÷ çè ø m
é ê ë
(3) v x
=
,
(42)
( )
ú û
k
=
m
0
234
Made with FlippingBook - Online catalogs