Issue 49
V. Matveenko et alii, Frattura ed Integrità Strutturale, 49 (2019) 225-242; DOI: 10.3221/IGF-ESIS.49.23
(1)
(2)
(3)
(4)
(3)
(4)
where the coefficients are determined from the recurrence relations available on E resource (www. icmm.ru/compcoeff) and can be calculated using the suggested options. For this purposes, it is necessary to input the number of terms of a series m , Poisson's ratio , the number of harmonics k and the desired , which can be either complex or real. Substituting (35) into (33), we obtain partial solutions (1) (2) (3) (4) 0 0 0 0 , , , v v v v for the function 0 v , , , m m m m m m A A A A B B , ,
¥ å
( x x S x x S x x S x x - - - ] ( ] ( ( ] ( ( 1 ) 1 2 1 1 2 1 1 2 1 1 2 S ( - - + - - - + ) ) ) ) ) - - + )
é ê ë
ù ú û
(1) v x
m
(1) P x m
=
,
( )
)
0
[
2
(
a
a a
= ¥
m
0
é ê ë
ù ú û
å
(2) v x
m
(2) P x m
=
,
( )
)
0
[
2
(
a
a a
=
m
0
ì ï ï í ï î ì ï ï í ï ï î
ü ï ï ý ï ï þ
¥ å
(
)
+
S
1
(
)
é ê ë
ù ú û
(36)
(3) v x
m
(3)
(3)
=
+
( ) P D x x + ln m m
,
( )
)
0
[
2
x
(
) - - + ï a a
a
=
m
0
ü ï ï ý ï ï þ
¥ å
(
) ( ) 1 m -
é ê ë
ù ú û
(4) v x
(4)
(4)
=
( ) P D x x + ⋅ ln m m
,
( )
] (
)
0
[
2
(
a
a a
=
m
0
(1) , , , , m m m m m m P P P P D D (2) (3) (4) (3) (4) ,
where the coefficients can be calculated ibidem. A general solution for 0
are available on E-resource (www. icmm.ru/compcoeff) and
u and 0
v can be written as
4 0 , u x C u x C u x C u x C u x v x C v x C v x C v x C v x (1) (2) (3) (4) 0 1 0 2 0 3 0 4 0 (1) (2) (3) (4) 0 1 0 2 0 3 0
(37)
where 1 2 3 4 , , , C C C C are the constants defined by the prescribed combination of boundary conditions (3) - (5).
C ONSTRUCTION OF PARTIAL SOLUTION FOR NONZEROTH HARMONICS OF THE FOURIER SERIES
T
he construction of partial solutions to Eqns. (10)-(12) involves some transformations [21], which yield a system of two differential equations with respect to , k k w v
4 d w x
3 d w x
2 d w x
dw x
k
k
k
k
4 f x
3 f x
2 f x
1 f x
f x w x
0
k
0
4
3
2
dx
dx
dx
dx
(38)
2 d v x
3 d w x
2 d w x
k dw x
x
x v x
x
x
x
x w x
k
k
k
3
2
1
0
k
k
2
0
2
3
2
dx
dx
dx
dx
,
2 0 1 2 3 , , , ,
are given by
where 0 1 2 3 4 , , , , , f f f f f
0
1 2 1 2
1
f x x
1 1 2 x
2 1 x 2 k k 2 3 1 1 k
2
x
1
0
16
1
f x x
1 1 2 x
2 1 x 2 k k 2 3 1 1 k
2
x
1
0
16
2 1 1 2 2 k
x
f x x x x
2
3 1 x
1 2 1 4
1
233
Made with FlippingBook - Online catalogs