Issue 47
E. Mele et alii, Frattura ed Integrità Strutturale, 47 (2019) 186-208; DOI: 10.3221/IGF-ESIS.47.15
Therefore the shear stiffnesses of the hexagrid, G * 12H
and G * 21H
, normalised to the shear modulus of the member solid
material, G s
, are given by:
5 I A h 1 h
11
h 1 13
*
3
G 12I (1 ν) h dCosθ
h
12,H
d
2 s 1
(15)
6E
5
2
A h 24I (1 ν)χ
G
bdh Senθ
s
h
h
h
3 13
2Cos θ d I
d
2
5 A d 1
d
4
d
11
2
2
6I Sen θ 6E
d
s 3
2
A d 24I (1 ν)χ
d
d
d
*
21,H G 4(1 ν)Sen θ G b( h dCos θ)d
(16)
5
s
2
3 13
Sen θ d I
d
1 2
2
5
-A d Cos θ
Cos θ
d
4
d
11
where: I h is the inertia of the cross sectional area of the horizontal beam with respect to the flexural axis, and:
I d 36E h h 3 I
2
2
I
A d Sen θ
h
d d
d
1
2 s 11 12
2
2
d 2h Cos θ d h 3
d A Sen θ d
2
13
3
3 d I A d I Cosθ d h
h d
d I
Cosθ 2A I
d h
d d
3
3
h
h Cosθ
3
2 s 11 12 2
36E
2
2
d d 12A d I Cosθ
h h 12A h I Cosθ ,
h
d
2
2
A h 24I (1 ν) χ
A d 24I (1 ν) χ
h
h
h
d
d
d
2I Cos θ
2I Cos θ
I
I
d
d
h
h
,
11
12
3
3
2
2
h
d
h
d
2 8I 4I 2E d h d s
h
13
The Eqs. (13-15) and Eq. (16) only contains geometrical quantities, i.e. the geometrical characteristics of the grid ( , h, d), and the geometrical properties of the structural member cross sections (A h , A d , I h , I d , χ h , χ d ). Therefore E * 1H /E s , E * 2H /E s ,
196
Made with FlippingBook Publishing Software