PSI - Issue 64
Pascual Saura Gómez et al. / Procedia Structural Integrity 64 (2024) 2125–2132 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
2132
8
• The section loss and the corrosion morphology induced by corrosion in strands, will be measured in the following steps of this study to provide relationships between the crack opening width and the pith depth in wires and the section loss of the wires. Acknowledgements Pascual Saura acknowledges the University of Alicante, the Ministry of Universities, and the European Union for their support in the Recualification of the Spanish University System 2021-2023. This research was conducted at the Eduardo Torroja Institute of Construction Sciences, specifically in the Corrosion of Reinforcement and Structural Safety research group, with funding from the European Union-Next Generation EU. The authors from University of Parma acknowledge the Italian Ministry of University and Research, which founded the PRIN project FIRMITAS “multi -hazard assessment, control and retroFIt of bridges for enhanced Robustness using sMart IndusTriAlized Solutions”. References Ahmed, M., El-Sayed, A. K., Alhozaimy, A. M., Al-Negheimish, A. I., Alabdulkarim, A. 2024. Prediction of strand corrosion damage in prestressed concrete beams through visual inspection of corrosion concrete cracking. Construction and Building Materials, 416, 135232. Andrade, C., Sanchez, J., Fullea, J., Rebolledo, N., Tavares, F. 2012. On-site corrosion rate measurements: 3D simulation and representative values. Materials and Corrosion, 63(12), 1154 – 1164. Angst, U., Elsener, B., Larsen, C. K., Vennesland, Ø. 2009. Critical chloride content in reinforced concrete — A review. Cement and Concrete Research, 39(12), 1122 – 1138. Angst, U. M., Geiker, M. R., Alonso, M. C., Polder, R., Isgor, O. B., Elsener, B., … Sagüés, A. 2019. The effect of the steel– concrete interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 262-SCI. Materials and Structures, 52(4), 88. Belletti, B., Rodríguez, J., Andrade, C., Franceschini, L., Sánchez Montero, J., Vecchi, F. 2020. Experimental tests on shear capacity of naturally corroded prestressed beams. Structural Concrete, 21(5). Chinchón-Payá, S., Torres Martín, J. E., Rebolledo Ramos, N., Sánchez Montero, J. 2021 a . Use of a Handheld X-ray Fluorescence Analyser to Quantify Chloride Ions In Situ: A Case Study of Structural Repair. Materials. Chinchón-Payá, S., Torres Martín, J. E., Silva Toledo, A., Sánchez Montero, J. 2021 b . Quantification of Chlorides and Sulphates on Concrete Surfaces Using Portable X-ray Fluorescence. Optimization of the Measurement Method Using Monte Carlo Simulation. Materials. Feliu, V., Gonzalez, J. A., Andrade, C., Feliu, S. 1998. Equivalent circuit for modelling the steel-concrete interface. II. Complications in applying the Stern-Geary equation to corrosion rate determinations. Corrosion Science, 40(6), 995 – 1006. Franceschini, L., Belletti, B., Tondolo, F., Sanchez, J. 2022. Study on the Probability Distribution of Pitting for Naturally Corroded Prestressing Strands Accounting for Surface Defects. Buildings. Garcia, E., Torres, J., Rebolledo, N., Arrabal, R., Sanchez, J. 2021. Corrosion of Steel Rebars in Anoxic Environments. Part I: Electrochemical Measurements. Materials. Garzon, A. J., Sanchez, J., Andrade, C., Rebolledo, N., Menéndez, E., Fullea, J. 2014. Modification of four point method to measure the concrete electrical resistivity in presence of reinforcing bars. Cement and Concrete Composites, 53, 249 – 257. Maurice, V., Marcus, P. (2018). Current developments of nanoscale insight into corrosion protection by passive oxide films. Current Opinion in Solid State and Materials Science, 22(4), 156 – 167. Polder, R. B. 2000. Test methods for on site measurement of resistivity of concrete. RILEM TC-154 technical recommendation. Construction and Building Materials, 15(2 – 3), 125 – 131. Rebolledo, N., Torres, J., Chinchón-Payá, S., Sánchez, J., de Gregorio, S., Ordóñez, M., López, I. 2023. Monitoring in a reinforced concrete structure for storing low and intermediate level radioactive waste. Lessons learnt after 25 years. Nuclear Engineering and Technology, 55(4), 1199 – 1209. Sanchez, J., Andrade, C., Torres, J., Rebolledo, N., Fullea, J. 2017. Determination of reinforced concrete durability with on-site resistivity measurements. Materials and Structures, 50(41), 1 – 9. Sánchez Montero, J., Saura Gómez, P., Torres Martín, J. E., Chinchón-Payá, S., Rebolledo Ramos, N. 2024. Variation of Corrosion Rate, Vcorr, during the Carbonation-Induced Corrosion Propagation Period in Reinforced Concrete Elements. Materials. doi:10.3390/ma17010101 Stern, M., Geary, A. L. (1957). Electrochemical Polarization: I . A Theoretical Analysis of the Shape of Polarization Curves. Journal of The Electrochemical Society, 104(1), 56 – 63. Toney, M. F., Davenport, A. J., Oblonsky, L. J., Ryan, M. P., Vitus, C. M. 1997. Atomic Structure of the Passive Oxide Film Formed on Iron. Physical Review Letters, 79(21), 4282 – 4285. Torres Martín, J. E., Rebolledo Ramos, N., Chinchón- Payá, S., Helices Arcila, I., Silva Toledo, A., Sánchez Montero, J., … de Haan, L. 2022. Durability of a reinforced concrete structure exposed to marine environment at the Málaga dock. Case Studies in Construction Materials, 17, e01582. Vecchi, F., Belletti, B., Franceschini, L., Andrade, C., Rodriguez, J., Montero, S. J. 2021 a . Flexural Tests on Prestressed Beams Exposed to Natural Chloride Action. In Fib (Ed.) (December 0, pp. 205 – 212). Proceedings of the fib CACRCS DAYS 2020. Vecchi, F., Franceschini, L., Tondolo, F., Belletti, B., Sánchez Montero, J., Minetola, P. 2021 b . Corrosion morphology of prestressing steel strands in naturally corroded PC beams. Construction and Building Materials, 296. Vennesland, Ø., Raupach, M., Andrade, C. 2007. Recommendation of Rilem TC 154- EMC: “Electrochemical techniques for measuring corrosion in concrete”— measurements with embedded probes. Materials and Structures, 40(8), 745 – 758.
Made with FlippingBook Digital Proposal Maker