PSI - Issue 64

Claude Rospars et al. / Procedia Structural Integrity 64 (2024) 716–723 Rospars & al. / Structural Integrity Procedia 00 (2019) 000–000

723

8

between several mother wavelet functions, including the Littlewood-Paley, often used for dynamic analysis of railway bridges, which is found to be inappropriate for these signals due to unnecessary oscillations and excessive edge effects. Its precise tuning, using the quality factor, is detailed in Carpine (2022). Finally, the application of the presented procedure to real data illustrates the ability of the CWT to detect and characterise non-linear behaviour. It was possible to detect a clear and strong dependence of the first three natural frequencies of the bridge on the amplitudes of the associated modes, which could have been misinterpreted as an effect of the inertia of the train. References Abdel Wahab, M.M., De Roeck, G., 1999. Damage detection in bridges using modal curvatures: application to a real damage scenario, Journal of Sound and Vibration, Vol 226: 2, pp. 217-235, doi: 10.1006/jsvi.1999.2295. Alvandi, A., Cremona C., Habib-Hallak P., Inchauspé M.-H., Ducret D., Dieleman L., 2005. Suivi dynamique d’un pont-rail, Revue européenne de génie civil 9 87–108, doi:10.1080/17747120.2005.9692747. Bovsunovsky , A. , Surace C., Structural damage detection based on features insensitive to ambient factors, Theoretical and Applied Fracture Mechanics , 110 (2020) 102780. doi:10.1016/j.tafmec.2020.102780. Cantero, D. , OBrien, E., 2013. The non-stationarity of apparent bridge natural frequencies during vehicle crossing events, FME Transactions, 41: 4, Januray, pp. 279 – 284. Cantero, D., O'Brien, E.J., Karoumi, R., 2014. Extending the assessment dynamic ratio to railway bridges, In: Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance, Civil-Comp Proceedings. KTH, Structural Engineering and Bridges, Ajaccio, Corsica, France, doi: 10.4203/ccp.104.67. Carpine R., Ientile S., Vacca N., Boscato G., Rospars C., Cecchi A, Argoul P., 2021. Modal identification in the case of complex modes – use of the wavelet analysis applied to the after-shock responses of a masonry wall during shear compression tests, Mechanical Systems and Signal Processing 160, 107753. doi:10.1016/j.ymssp.2021.107753. Carpine R. 2022. Détection de défauts dans les structures de génie civil par analyse en ondelettes de réponse vibratoire, in French, PhD Thesis, Ecole Doctorale Paris Est, .http://www.theses.fr/2022UEFL2064/document. Cremona, C., 2004. Dynamic monitoring applied to the detection of structural modifications: a high-speed railway bridge study, Progress in Structural Engineering and Materials, 6 (3), pp. 147—161, Juillet 2004, doi : 10.1002/pse.177. Frýba, L., 1972. Vibration of solids and structures under moving loads, Springer Netherlands, Dordrecht, doi: 10.1007/978-94-011-9685-7. Géradin, M., Rixen D., 2015. Mechanical vibrations: theory and application to structural dynamics, third edition Edition, Wiley, Chichester, West Sussex, United Kingdom. Ientile, S., Cecchi, A., Boscato, G., Argoul, P., Schmidt, F., Nedjar, B., Siegert, D., 2018. Methodology for the dynamic identification of damaged unreinforced masonry walls through vibrations tests, In proceedings of 40th IABSE Symposium Tomorrow's Megastructures, International Association for Bridge and Structural Engineering, 8 pages S6-29, Nantes, France, doi: 10.2749/nantes.2018.s6-29. Le, T.-P., Argoul, P., 2004. Continuous wavelet transform for modal identification using free decay response, Journal of Sound and Vibration 277 (1), 73–100, doi:10.1016/j.jsv.2003.08.049. Lin, C.C., Wang, J.F., Chen, B.L. 2005. Train-induced vibration control of high-speed railway bridges equipped with multiple tuned mass dampers, Journal of Bridge Engineering, Vol 10:4, pp. 398—414, 10.1061/(ASCE)1084-0702(2005)10:4(398). Liu, K., Reynders, E., De Roeck, G., Lombaert, G., 2009. Experimental and numerical analysis of a composite bridge for high-speed trains, Journal of Sound and Vibration 320 (1-2)) 201–220. doi:10.1016/j.jsv.2008.07.010. Maeck, J. and Peeters, B., De Roeck, G., 2001. Damage identification on the Z24 bridge using vibration monitoring, Smart Materials and Structures, Vol 10:3, pp. 512—517, doi: 10.1088/0964-1726/10/3/313. Pnevmatikos, N.G., Hatzigeorgiou, G. D., 2017. Damage detection of framed structures subjected to earthquake excitation using discrete wavelet analysis, Bulletin of Earthquake Engineering, Vol 15:1, pp. 227—248, doi: 10.1007/s10518-016-9962-z. Rebelo , C., Simoes da Silva, L. , Rigueiro, C. , Pircher, M. , 2008. Dynamic behaviour of twin single-span ballasted railway viaducts - Field measurements and modal identification, Engineering Structures 30 (9), pp. 2460–2469, doi:10.1016/j.engstruct.2008.01.023. Vacca, N., Rouzaud, C., Hervé-Secourgeon, G., Galan, M., Argoul, P., Rospars, C., 2018. Characterization of dissipative behaviour of a reinforced concrete mock-up after soft impact tests through wavelet analysis, In proceedings of 40th IABSE Symposium Tomorrow's Megastructures, International Association for Bridge and Structural Engineering, 8 pages S4-47, Nantes, France, doi: 10.2749/nantes.2018.s4-47. Zeng, X.-H., Lai, J., Wu H., 2018. Hunting stability of high-speed railway vehicles under steady aerodynamic loads, International Journal of Structural Stability and Dynamics 18 (07), 1850093. doi:10.1142/S0219455418500931.

Made with FlippingBook Digital Proposal Maker