PSI - Issue 64
H. Varela et al. / Procedia Structural Integrity 64 (2024) 1427–1434 Varela et al./ Structural Integrity Procedia 00 (2019) 000 – 000
1434
8
Castoldi, R., Liebscher, M., de Souza, L.M.S., Mechtcherine, V., Silva, F.A., 2024. Tensile creep behavior of sisal fibers under different environmental conditions, Journal of Material Science. https://doi.org/10.1007/s10853-024-09427-5 De Andrade Silva F., Chawla N., Toledo Filho R.D., 2008. Tensile behavior of high performance natural (sisal) fibers, Composites Science and Technology, 68, 15–16, pp. 3438-3443. https://doi.org/10.1016/j.compscitech.2008.10.001 Fidelis, M.E.A., Pereira, T.V.C., Martins Gomes, O. F., de Andrade Silva, F., Toledo Filho R. D., 2013. The effect of fiber morphology on the tensile strength of natural fibers, Journal of Materials Research and Technology, 2, 2, 149-157. https://doi.org/10.1016/j.jmrt.2013.02.003. Flatt, R. J., & Wangler, T., 2022. On sustainability and digital fabrication with concrete. Cement and Concrete Research, 158. https://doi.org/10.1016/j.cemconres.2022.106837 Hambach, M., Möller, H., Neumann, T., Volkmer, D., 2016. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (> 100MPa), Cement and Concrete Research, 89, 80-86. https://doi.org/10.1016/j.cemconres.2016.08.011. Li, H., Addai-Nimoh, A., Kreiger, E., Khayat, K. H., 2024. Methodology to design eco-friendly fiber-reinforced concrete for 3D printing, Cement and Concrete Composites, 147, 105415. https://doi.org/10.1016/j.cemconcomp.2023.105415. Liu, Q., Jiang, Q., Zhou, Z., Xin, J., Huang, M., 2023. The printable and hardened properties of nano-calcium carbonate with modified polypropylene fibers for cement-based 3D printing, Construction and Building Materials, 369, 130594, https://doi.org/10.1016/j.conbuildmat.2023.130594. Puentes, J., Barluenga, G., Palomar, I., 2015. Effect of silica-based nano and micro additions on SCC at early age and on hardened porosity and permeability, Construction and Building Materials, 81, 154-161. https://doi.org/10.1016/j.conbuildmat.2015.02.053. Ren, G., Yao, B., Ren, M., Gao, X., 2022. Utilization of natural sisal fibers to manufacture eco-friendly ultra-high performance concrete with low autogenous shrinkage. Journal of Cleaner Production, 332 (2022) 130105, https://doi.org/10.1016/j.jclepro.2021.130105. Roussel, N., 2018. Rheological requirements for printable concretes, Cem Concr Res. 112 (2018) 76–85. https://doi.org/10.1016/j.cemconres.2018.04.005. Toledo Filho, R.D., de Andrade Silva, F., Fairbairn, E.M.R., de Almeida Melo Filho J., 2009. Durability of compression molded sisal fiber reinforced mortar laminates, Constr. Build. Mater., 23 (6) 2409–2420. https://doi.org/10.1016/j.conbuildmat.2008.10.012 Van Overmeir, A.L., Šavija, B., Bos, F.P., Schlangen, E., 2023. 3D printable strain hardening cementitious composites (3DP-SHCC), tailoring fresh and hardened state properties, Construction and Building Materials, 403, 132924, https://doi.org/10.1016/j.conbuildmat.2023.132924. Varela, H., Barluenga, G., Perrot, A., 2023a. Extrusion and structural build-up of 3D printing cement pastes with fly ash, nanoclays and VMAs, Cement and Concrete Composites, 142. https://doi.org/10.1016/j.cemconcomp.2023.105217 Varela, H., Barluenga, G., Sonebi, M., 2023b. Rheology characterization of 3D printing mortars with nanoclays and basalt fibers, Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.07.151. Wolfs, R.J.M., Bos, F.P., Salet, T.A.M., 2019. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion, Cement and Concrete Research, 119, 132. https://doi.org/10.1016/j.cemconres.2019.02.017
Made with FlippingBook Digital Proposal Maker