PSI - Issue 64

Angelo Savio Calabrese et al. / Procedia Structural Integrity 64 (2024) 1832–1839 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

1839

8

• The use of toughened adhesive for bonding FRP in strengthening/repair applications of existing structures can led to higher bond capacity of the externally-bonded reinforcement with respect to un-toughened ones. This is attributed to a higher fracture energy and a more efficient stress transfer mechanism. • The bond-slip cohesive behavior of toughened adhesives can be characterized by an idealized tri-linear law, associated with high fracture energy. This results in higher strain absorption capacity. References Achillopoulou, D.V., Kosta, A., Stamataki, N.K., Montalbano, A., Choffat, F., 2024. Efficiency of CFRP Strengthening Measures for Reinforced Concrete Structural Members Using Toughened Epoxies. Construction Materials 4, 173 – 193. Al-Zu'bi, M., Fan, M., Anguilano, L., 2022. Advances in bonding agents for retrofitting concrete structures with fibre reinforced polymer materials: A review. Construction and Building Materials 330, 127115, Bagheri, R., Pearson, R.A., 1996. Role of particle cavitation in rubbertoughened epoxies: Microvoid toughening. Polymer 37, 4529-4538. Bocciarelli, M., 2021. A New Cohesive Law for the Simulation of Crack Propagation under Cyclic Loading. Application to Steel- and Concrete FRP Bonded Interface. Theoretical and Applied Fracture Mechanics 114. doi: 10.1016/j.tafmec.2021.102992. Calabrese, A.S., D’Antino, T., Colombi, P., 2024. Effect of adhesive ductility on the bond behavior of CFRP-steel cohesive interfaces made with toughened epoxy resin. Submitted to: Composites Science and Technology. Chandrasekaran, S., Sato, N., Tölle, F., Mülhaupt, R., Fiedler, B., Schulte, K., 2014. Fracture toughness and failure mechanism of graphene based epoxy composites. Composites Science and Technology 97, 90-99. Dušek, K., Galina, H., 1980. Features of network formation in the chain crosslinking (co)polymerization. Polymer Bulletin 3, 19 – 25. Irshidat, M.R., Al-Saleh, M.H., Al-Shoubaki, M., 2015. Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns. Composite Structures 134, 523-532. Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Sprenger, S., 2007. Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48, 530-541. Kinloch, A.J., Maxwell, D., Young, R.J., 1985. Micromechanisms of crack propagation in hybrid-particulate composites. Journal of Materials Science Letters 4, 1276 – 1279. Lange, F.F., 1970. The interaction of a crack front with a second-phase dispersion. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 22 , 0983 – 0992. Mafi, E.R., Ebrahimi, M., 2008. Role of core-shell rubber particle cavitation resistance on toughenability of epoxy resins. Polymer Engineering And Science 48, 1376-1380. Merz, E.H., Claver, G.C., Baer, M., 1956. Studies on heterogeneous polymeric systems. Journal of Polymer Science 22, 325-341 Mi, X., Liang, N., Xu, H., Wu, J., Jiang, Y., Nie, B., Zhang, D., 2022. Toughness and its mechanisms in epoxy resins. Progress in Materials Science 130, 100977. Odegard, G.M., Clancy, T.C., Gates, T.S., 2005. Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46, 553 – 562. Ozcan, U.E., Karabork, F., Yazman, S., Akdemir, A., 2019. Effect of Silica/Graphene Nanohybrid Particles on the Mechanical Properties of Epoxy Coatings. Arabian Journal for Science and Engineering 44, 5723 – 5731. Papa, T., Bocciarelli, M., 2023. Identification of the Parameters Contained in a Cyclic Cohesive Zone Model for Fatigue Crack Propagation. Engineering Fracture Mechanics 279. doi: 10.1016/j.engfracmech.2023.109055. Quaresimin, M., Schulte, K., Zappalorto, M., Chandrasekaran, S., 2016. Toughening mechanisms in polymer nanocomposites: From experiments to modelling. Composites Science and Technology 123, 187-204. Rais-Rohani, M., Rouhi, M., 2017. Predicting the Elastic Properties of CNF/Thermoset Polymer Composites Considering the Effect of Interphase and Fiber Waviness, in “ Characterization of Nanocomposites ”. In: Frank Abdi and Mohit Garg (eds.), Jenny Stanford Publishing, New York, pp. 31. Sika Italia S.p.A., 2024. Pioneering steel bridge repair: Sikadur-370, https://www.sika.com/en/fundamentals/innovation/sika-innovation flash/pioneering-steel-bridge-repair--sikadur--370.html. Sultan, J.N., Mcgarry, F.J., 1973. Effect of rubber particle size on deformation mechanisms in glassy epoxy. Polymer Engineering and Science 13, 29-34. Tatar, J., Milev, S., 2021. Durability of Externally Bonded Fiber-Reinforced Polymer Composites in Concrete Structures: A Critical Review. Polymers 13, 765. Wang, L., Liang, Y., Yu, Q., Chen, S., Zhang, J., Miao, M., Zhang, D., 2018. Synthesis of epoxy-ended hyperbranched polyesters with reinforcing and toughening function for diglycidyl ether of bisphenol-A. Polymer Composites 39, 2046 – 2055. Wu, S., Ladani, R.B., Zhang, J., Bafekrpour, E., Ghorbani, K., Mouritz, A.P., Kinloch, A.J., Wang, C.H., 2015. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94, 607-618. Yee, A.F., Pearson, R.A., 1986. Toughening mechanisms in elastomer-modified epoxies: Part 2. Journal of Materials Science 21, 2475 – 2488. Zhang, H., Zhang, Z., Friedrich, K., Eger, C., 2006. Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Materialia 54, 1833-1842. Zhang, J., Liu, C., Cheng, J., Miao, M., Zhang, D., 2018. Simultaneous toughening and strengthening of diglycidyl ether of bisphenol-a using epoxy-ended hyperbranched polymers obtained from thiol-ene click reaction. Polymer Engineering and Science 58,1703 – 1709.

Made with FlippingBook Digital Proposal Maker