PSI - Issue 64

Available online at www.sciencedirect.com Structural Integrity Procedia 00 (2023) 000 – 000 Available online at www.sciencedirect.com ScienceDirect

www.elsevier.com/locate/procedia

ScienceDirect

Procedia Structural Integrity 64 (2024) 1774–1781

SMAR 2024 – 7th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures Post-earthquake fire performance of a steel moment-resisting frame Patrick Covi a *, Nicola Tondini a a University of Trento - Department of Civil, Environmental and Mechanical Engineering. Via Mesiano 77,Trento 38123, Italy Abstract The effects of earthquakes and fires are typically analyzed separately in structural design. However, historical events highlight that fires following earthquake (FFE) can cause significantly more damage than an earthquake alone. The 1906 San Francisco earthquake exemplifies this, with fires destroying 80% of the city. Other major FFE events include Tokyo (1923), Kobe (1995), and Tohoku (2011) earthquakes. Earthquakes can damage infrastructure, leading to potential ignitions and structural fire performance deterioration. This paper focuses on the post-earthquake fire performance of a four-story five-bay steel frame using a probabilistic FFE framework to develop FFE fragility functions and consider uncertainties in the ground motions, compartmentation measures, fire development, and material properties. Damage to structural and non-structural components is considered. In this respect, the probabilistic FFE framework generates the fire scenarios based on seismic response. The seismic response is assessed through nonlinear time-history analyses. Then, post-earthquake fire ignitions in specific compartments are assessed based on the structural damage, determined by inter-storey drift ratio (IDR) and peak floor acceleration (PFA). Compartmentation and opening characteristics as well as the potential for fire spread are considered based on seismic damage in windows, doors, and partition walls following seismic fragility functions found in the literature. Finally, thermomechanical analyses are performed, and failure criteria based on displacement and displacement rate are applied to the beams and columns. The results of the probabilistic analyses were used to produce fragility functions to evaluate the probability of exceeding a limit state conditioned on an intensity measure in the context of FFE. A higher probability of exceeding the collapse limit state with shorter times to collapse was observed when the structure was subjected to higher values of spectral acceleration. © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers Keywords: steel frames; fire following earthquake; fragility functions; probabilistic framework. © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers

* Corresponding author. Tel.: +39-0461-282546. E-mail address: patrick.covi@unitn.it

2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers

2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers 10.1016/j.prostr.2024.09.183

Made with FlippingBook Digital Proposal Maker