PSI - Issue 64
Available online at www.sciencedirect.com Structural Integrity Procedia 00 (2023) 000 – 000 Available online at www.sciencedirect.com ScienceDirect
www.elsevier.com/locate/procedia
ScienceDirect
Procedia Structural Integrity 64 (2024) 1073–1080
SMAR 2024 – 7th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures Numerical characterisation of FRP curved reinforcement produced by filament winding Luigi Granata a , Francesco Ascione a , Saverio Spadea b, *
a University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano, Italy b Polytechnic University of Bari, Via Giovanni Amendola 126/B, 70126 Bari, Italy
Abstract Previous studies have demonstrated that an automated filament winding process can conveniently produce shear reinforcement for concrete structures. The method allows the creation of geometrically complex elements suitable for materials optimisation. This is in addition to the advantages of non-metallic reinforcement. On the contrary, the biggest drawback is the anisotropy properties of fibrous materials. Concentrations of stresses and material defects characterise the reinforcement's curved portions; thus, material efficiency reduction is expected. Generally, the strength of pultruded FRP stirrups is estimated at about 30-40% of the tensile strength in the direction of the fibres. Still, experimental studies have shown that efficiency can be increased due to the manufacturing process and cross-section aspect ratio. This study aims to identify a mechanical model for predicting the bent strength of FRP stirrups fabricated by the filament winding technique. This is here formalised as a non-linear equilibrium problem of a curved Timoshenko beam on an elastic foundation. Numerical results agree with the experimental data available from previous studies, assessing the model's suitability. © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organisers Keywords: Filament winding, Stirrup, Concrete, Beam, Shear, Numerical modelling. © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers
* Corresponding author. Tel.: +0-000-000-0000 ; fax: +0-000-000-0000 . E-mail address: saverio.spadea@poliba.it
2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers
2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers 10.1016/j.prostr.2024.09.151
Made with FlippingBook Digital Proposal Maker