PSI - Issue 64
Jack Smith et al. / Procedia Structural Integrity 64 (2024) 220–227 Smith, J., Paraskevopoulou, C. Structural Integrity Procedia 00 (2019) 000 – 000
227
8
References
Atkinson, C., Paraskevopoulou, C., Miller, R., 2021. Investigating the rehabilitation methods of Victorian masonry tunnels in the UK. Tunnelling and Underground Space Technology 108, 103696. https://doi.org/10.1016/J.TUST.2020.103696 Bahreini, F., Hammad, A., 2024. Dynamic graph CNN based semantic segmentation of concrete defects and as-inspected modeling. Autom Constr 159, 105282. https://doi.org/10.1016/J.AUTCON.2024.105282 Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 13-17-August-2016, 785 – 794. https://doi.org/10.1145/2939672.2939785 Chiu, Y.C., Wang, T.T., Huang, T.H., 2015. Investigating continual damage of a nineteenth century masonry tunnel. http://dx.doi.org/10.1680/feng.13.00030 167, 109 – 118. https://doi.org/10.1680/FENG.13.00030 Dong, C.Z., Catbas, F.N., 2021. A review of computer vision – based structural health monitoring at local and global levels. Struct Health Monit 20, 692 – 743. https://doi.org/10.1177/1475921720935585/ASSET/IMAGES/10.1177_1475921720935585-IMG6.PNG Hackel, T., Wegner, J.D., Schindler, K., 2016. FAST SEMANTIC SEGMENTATION OF 3D POINT CLOUDS WITH STRONGLY VARYING DENSITY, in: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. pp. 177 – 184. https://doi.org/10.5194/isprsannals-III-3-177-2016 Ibrahim, Y., Nagy, B., Benedek, C., 2020. Deep Learning-Based Masonry Wall Image Analysis. Remote Sensing 2020, Vol. 12, Page 3918 12, 3918. https://doi.org/10.3390/RS12233918 Ji, A., Chew, A.W.Z., Xue, X., Zhang, L., 2022. An encoder-decoder deep learning method for multi-class object segmentation from 3D tunnel point clouds. Autom Constr 137, 104187. https://doi.org/10.1016/J.AUTCON.2022.104187 Kaartinen, E., Dunphy, K., Sadhu, A., 2022. LiDAR-Based Structural Health Monitoring: Applications in Civil Infrastructure Systems. Sensors (Basel) 22, 4610. https://doi.org/10.3390/S22124610 Kajatin, R., Nalpantidis, L., 2021. Image Segmentation of Bricks in Masonry Wall Using a Fusion of Machine Learning Algorithms, in: ICPR 2021: Pattern Recognition. ICPR International Workshops and Challenges. Springer Science and Business Media Deutschland GmbH, pp. 446 – 461. https://doi.org/10.1007/978-3-030-68787-8_33/FIGURES/5 Llanca, D., Breul, P., Bacconnet, C., 2017. Improving the diagnosis methodology for masonry tunnels. Tunnelling and Underground Space Technology 70, 55 – 64. https://doi.org/10.1016/J.TUST.2017.07.002 Loverdos, D., Sarhosis, V., 2023. Geometrical digital twins of masonry structures for documentation and structural assessment using machine learning. Eng Struct 275, 115256. https://doi.org/10.1016/J.ENGSTRUCT.2022.115256 Paraskevopoulou, C., Cornaro, A., Admiraal, H., Paraskevopoulou, A., 2019. Underground space and urban sustainability: an integrated approach to the city of the future, in: International Conference on Changing Cities IV. University of Thessaly, pp. 198 – 208. Paraskevopoulou, C., Dallavalle, M., Konstantis, S., Spyridis, P., Benardos, A., 2022. Assessing the failure potential of tunnels and the impacts on cost overruns and project delays. Tunnelling and Underground Space Technology 123, 104443. https://doi.org/10.1016/J.TUST.2022.104443 Paraskevopoulou, C., Skolidis, A., Parsons, S., Marinos, V., 2021. Integrating uncertainty into geotechnical design of underground openings in tectonically undisturbed but lithologically varied sedimentary environments. Tunnelling and Underground Space Technology 113, 103979. https://doi.org/10.1016/J.TUST.2021.103979 Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 . Munich, pp. 234 – 241. Sabato, A., Dabetwar, S., Kulkarni, N.N., Fortino, G., 2023. Noncontact Sensing Techniques for AI-Aided Structural Health Monitoring: A Systematic Review. IEEE Sens J 23, 4672 – 4684. https://doi.org/10.1109/JSEN.2023.3240092 Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. Smith, J., Paraskevopoulou, C., Bedi, A., Invernici, M., 2023a. Deep learning for masonry lined tunnel condition assessment. Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World- Proceedings of the ITA-AITES World Tunnel Congress, WTC 2023 2910 – 2917. https://doi.org/10.1201/9781003348030-351 Smith, J., Paraskevopoulou, C., Cohn, A., Kromer, R., Bedi, A., Invernici, M., 2023b. Automated masonry spalling severity segmentation in historic railway tunnels using deep learning and a block face plane fitting approach, (preprint). Leeds. Sony, S., Dunphy, K., Sadhu, A., Capretz, M., 2021. A systematic review of convolutional neural network-based structural condition assessment techniques. Eng Struct 226, 111347. https://doi.org/10.1016/J.ENGSTRUCT.2020.111347 Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L., 2019. KPConv: Flexible and deformable convolution for point clouds. Proceedings of the IEEE International Conference on Computer Vision 6410 – 6419. https://doi.org/10.1109/ICCV.2019.00651 Valero, E., Bosché, F., Forster, A., 2018. Automatic segmentation of 3D point clouds of rubble masonry walls, and its application to building surveying, repair and maintenance. Autom Constr 96, 29 – 39. https://doi.org/10.1016/J.AUTCON.2018.08.018 Zhang, Z., Ji, A., Wang, K., Zhang, L., 2022. UnrollingNet: An attention-based deep learning approach for the segmentation of large-scale point clouds of tunnels. Autom Constr 142, 104456. https://doi.org/10.1016/J.AUTCON.2022.104456 Zhou, M., Cheng, W., Huang, H., Chen, J., 2021. A Novel Approach to Automated 3D Spalling Defects Inspection in Railway Tunnel Linings Using Laser Intensity and Depth Information. Sensors (Basel) 21, 5725. https://doi.org/10.3390/S21175725
Made with FlippingBook Digital Proposal Maker