PSI - Issue 64
Cedric Eisermann et al. / Procedia Structural Integrity 64 (2024) 1224–1231 Eisermann et al./ Structural Integrity Procedia 00 (2019) 000–000
1231
8
4. Discussion and Outlook According to the German Recalculation Guideline, the partial factor for the dead load may be reduced from 1.35 to 1.20 if the actual load distribution is precisely known. Alternatively, fib Bulletin 80 provides two methods to adjust the partial factor to the object-specific self-weight distribution on a probabilistic basis. In this case, the planned load distribution can be used to determine the internal forces. The application of the DVM and APFM to the Nibelungen Bridge has shown that a reduction of partial factors above 1.20 is possible in case the uncertainties related to geometry and density of the concrete are known. Both methods yielded similar results. However, further investigations into the geometry of the whole river bridge, the weight of the concrete, and the reinforcement content are required to justify a reduction in the dead load partial factor of the Nibelungen Bridge. In general, investigations of this nature are associated with high financial costs. Therefore, further research will be conducted to determine how the results from the pilot area can be generalized and applied to a measurement concept for the entire bridge and other bridges Furthermore quality requirements for as-is models will be investigated in order to standardize the model comparison and, subsequently, the reduction of the dead load partial factor. Acknowledgements This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the priority program (SPP 2388) “Hundred plus - extending the service life of complex structures through intelligent digitalization” (project numbers: 501808860 and 501804558). References Boros, Vazul (2019): Reassessment of the partial safety factor for self weight of existing bridges. In International Probabilistic Workshop 2019. Edinburgh, United Kingdom, September 11 to 13, pp. 75–80. Braml, Thomas; Wurzer, Otto (2012): Probabilistische Berechnungsverfahren als zusätzlicher Baustein der ganzheitlichen Bewertung von Brücken im Bestand. In Beton und Stahlbetonbau 107 (10), pp. 654–668. DOI: 10.1002/best.201200037. Brühwiler, E. (2023): Zur Überprüfung der Tragsicherheit der Nibelungenbrücke. In Generaldirektion Kulturelles Erbe Rheinland-Pfalz et al. (Ed.): Die Nibelungenbrücke in Worms: Zur Zukunft eines bedeutenden Ingenieurbauwerks. Petersberg: Michael Imhof Verlag, pp. 99–107. Bundesministerium für Verkehr, Bau und Stadtentwicklung (2011): Richtlinie zur Nachrechnung von Straßenbrücken im Bestand. Bonn. Caspeele, Robby; Steenbergen, Raphaël; Sýkora, Miroslav; Allaix, Diego Lorenzo; Botte, Wouter; Diamantidis, Dimitris et al. (2016): Partial factor methods for existing concrete structures (fib Bulletin 80). Lausanne: fib. The International Federation for Structural Concrete. Cremona, Christian; Poulin, Benoît (2017): Standard and advanced practices in the assessment of existing bridges. In Structureand Infrastructure Engineering 13 (4), pp. 428–439. DOI: 10.1080/15732479.2016.1164731. Enevoldsen, Ib (2001): Experience with Probabilistic-based Assessment of Bridges. In Structural Engineering International 11 (4), pp. 251–260. DOI: 10.2749/101686601780346814. Gebauer, Daniel; Betz, Peter; Fritsch, Christina; Schacht, Gregor; Marx, Steffen (2024): Potenzial direkter Materialuntersuchung im Bestand. In Beton und Stahlbetonbau 119 (2), pp.91–102. DOI: 10.1002/best.202300093. Gino, Diego; Castaldo, Paolo; Bertagnoli, Gabriele; Giordano, Luca; Mancini, Giuseppe (2020): Partial factor methods for existing structures according to fib Bulletin 80: Assessment of an existing prestressed concrete bridge. In Structural Concrete 21 (1), pp. 15–31. DOI: 10.1002/suco.201900231. Kang, Chongjie; Voigt, Chris; Eisermann, Cedric; Kerkeni, Naceur; Hegger, Josef; Hermann, Wladimir et al. (2024): Die Nibelungenbrücke als Pilotprojekt der digital unterstützten Bauwerkserhaltung. In Bautechnik 101 (2), pp. 76–86. DOI: 10.1002/bate.202300089. König, G.; Hosser, D. (1982): The simplified level II method and its application on the derivation of safety elements for level I. In Comité euro international du béton (Ed.): CEB Bulletin no. 147, Conceptional Preparation of Future Codes - Progress Report. Paris, France. Lara, Carlos; Tanner, Peter; Zanuy, Carlos; Hingorani, Ramon (2021): Reliability Verification of Existing RC Structures Using Partial Factors Approaches and Site-Specific Data. In Applied Sciences 11 (4), p. 1653. DOI: 10.3390/app11041653. Löschmann, Jens; Ahrens, Alexander; Dankmeyer, Uwe; Ziem, Eberhard; Mark, Peter (2017): Methoden zur Reduktion des Teilsicherheitsbeiwerts für Eigenlasten bei Bestandsbrücken. In Beton und Stahlbetonbau 112 (8), pp. 506–516. DOI: 10.1002/best.201700027. Maurer, R.; Zilch, K.; Hegger, J.; Dunkelberg D.; Karakas, A.; Kolodziejczyk (2012): Erläuterungen und Hintergründe zur Nachrechnungsrichtlinie - Betonbrücken. In Bauingenieur 87 (1), pp. 24–35. Orcesi, André; Boros, Vazul; Kušter Marić, Marija; Mandić Ivanković, Ana; Sýkora, Miroslav; Caspeele, Robby et al. (2021): Bridge Case Studies on the Assignment of Partial Safety Factors for the Assessment of Existing Structures. In Matos, José C et al. (Ed.): 18th International Probabilistic Workshop. Guimarães, May 12 to 14. Cham: Springer International Publishing, pp. 205–218. Rackwitz, R. (1996): Einwirkungen auf Bauwerke. In G. Melhorn (Ed.): Der Ingenieurbau: Tragwerkszuverlässigkeit. Berlin: Ernst & Sohn. Steenbergen, Raphaël D. J. M.; Sýkora, Miroslav; Diamantidis, Dimitris; Holický, Milan; Vrouwenvelder, Ton (2015): Economic and human safety reliability levels for existing structures. In Structural Concrete 16 (3), pp.323–332. DOI: 10.1002/suco.201500022.
Made with FlippingBook Digital Proposal Maker