PSI - Issue 64
Federica Russo et al. / Procedia Structural Integrity 64 (2024) 1752–1758 Federica Russo, Gabriella Maselli, Antonio Nesticò / Structural Integrity Procedia 00 (2019) 000 – 000
1758
7
Looking forward, it is first intended to return the results of the already ongoing application of the proposed model to case studies. It is also planned to integrate LCA and LCC assessment methodologies with Building Information Modeling (BIM). The integration of these methodologies is another step forward in simplifying and optimizing decision-making. BIM provides a unified digital environment for data collection, management, and analysis, enabling automated calculations, improved collaboration among the different professionals involved in the activities, and encouraging the design and construction of more sustainable buildings, from the earliest stages of the project (Alasmari et al., 2022). The integration of BIM, LCA and LCC, in fact, is not just a technological adaptation, but rather an essential strategy to guide the construction industry towards a sustainable approach, improving operational efficiency and reducing the environmental impact of building activities (Morsi et al., 2022). References Alasmari, E.; Martinez-Vazquez, P.; Baniotopoulos, C., 2022. A Systematic Literature Review of the Adoption of Building Information Modelling (BIM) on Life Cycle Cost (LCC). Buildings 2022, 12, 1829. Ahmed Ali, K., Ahmad, M.I.; Yusup, Y., 2020. Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector. Sustainability 12, pp. 7427. Baldo G.L., Marino M., Rossi S., 2008. Analisi del ciclo di vita LCA : gli strumenti per la progettazione sostenibile di materiali, prodotti e processi, Edizioni Ambiente, Milano, p. 70 Barrizza, P., Siviero, E., 2009. Crolli e dissesti, le pavimentazioni industriali anello debole della progettazione, I Convegno di Ingegneria Forense e IV Convegno su Crolli, Affidabilità Strutturale e Consolidamento. Calabrò, F.; Iannone, L.; Pellicanò, R., 2021. The historical and environmental heritage for the attractiveness of cities. the case of the Umbertine Forts of Pentimele in Reggio Calabria, Italy. In: Bevilacqua C., Calabrò F., Della Spina L. (eds.) New Metropolitan Perspectives. Smart Innovation , Systems and Technologies, Vol. 178, 1990-2004; Springer. DOI: https://doi.org/10.1007/978-3-030-48279-4_188. Cosenza, E., Manfredi, G., Pecce, M., 2019. Strutture in cemento armato, Hoepli. Demertzi, M., Silvestre, J., Garrido, M., Correia, J.R., Durão, V., Proença, M., 2020. Life cycle assessment of alternative building floor rehabilitation systems, Structures 26, 237-246. European Commission, 2010. Institute for Environment and Sustainability, International Reference Life Cycle Data System (ILCD) Handbook : general guide for life cycle assessment : detailed guidance. (PDF), Publications Office of the European Union. Fregonara, E., 2017. Methodologies for Supporting Sustainability in Energy and Buildings. The Contribution of Project Economic Evaluation, Energy Procedia 111, 2-11 Fregonara, E.; Ferrando, D.G.; Tulliani, J.-M. 2022. Sustainable Public Procurement in the Building Construction Sector. Sustainability 14, 11616. https://doi.org/ 10.3390/su141811616 Fregonara, E., 2023. Valutazione sostenibilità progetto, Life Cycle Thinking e indirizzi internazionali, FrancoAngeli. Huang, L., Krigsvoll, G., Johansen, F., Liu, Y., Zhang, X., 2018. Carbon emission of global construction sector. Renewable and Sustainable Energy Reviews 81 (2), 1906-1916, Kambanou, M. L., Sakao, T., 2020. Using life cycle costing (LCC) to select circular measures: A discussion and practical approach, Resources, Conservation and Recycling 155, pp. 104650. Larsen, V. G., Tollin, N., Sattrup, P. A., Birkved, M., Holmboe, T., 2022. What are the challenges in assessing circular economy for the built environment? A literature review on integrating LCA, LCC and S-LCA in life cycle sustainability assessment, Journal of Building Engineering 50, pp. 104203. Lavagna M., 2008. Life Cycle Assessment in edilizia progettare e costruire in una prospettiva di sostenibilità ambientale, Hoepli, Milano, p. 131. Moins, B., France, C., Van Den Bergh, W., & Audenaert, A., 2020. Implementing life cycle cost analysis in road engineering: A critical review on methodological framework choices. Renewable and Sustainable Energy Reviews, 133, pp. 110284. Morsi, D. M. A., Ismaeel, W. S. E., Ehab, A., Othman, A. A. E., 2022. BIM-based life cycle assessment for different structural system scenarios of a residential building, Ain Shams Engineering Journal 13 (6) pp. 101802. Nesticò, A., Maselli, G., Ghisellini, P.; Ulgiati, S., 2023. A Dual Probabilistic Discounting Approach to Assess Economic and Environmental Impacts. Environ Resource Econ 85, 239 – 265. https://doi.org/10.1007/s10640-023-00766-6 Panza Uguzzoni, A.M., Fregonara, E., Ferrando, D.G., Anglani, G., Antonaci, P., Tulliani, J.M, 2023. Concrete Self-Healing for Sustainable Buildings: A Focus on the Economic Evaluation from a Life-Cycle Perspective. Sustainability, 15, 13637. Patti, S., 2023. Life Cycle Thinking and Circular Economy, Springer Books, in: Circular Economy and Policy, 39-55. Petrillo, A., Colangelo, F., Farina, I., Travaglioni, M., Salzano, C., Cioffi, R., 2022. Multi-criteria analysis for Life Cycle Assessment and Life Cycle Costing of lightweight artificial aggregates from industrial waste by double-step cold bonding palletization, Journal of Cleaner Production 351, pp.131395. Rigamonti, L., Grosso, M., 2009. Riciclo dei rifiuti : analisi del ciclo di vita dei materiali di imballaggio., Flaccovio. Sameer, H.; Bringezu, S., 2019. Life cycle input indicators of material resource use for enhanc-ing sustainability assessment schemes of buildings. J. Build. Eng 21, 230 – 242.
Made with FlippingBook Digital Proposal Maker