PSI - Issue 7
C. Garb et al. / Procedia Structural Integrity 7 (2017) 497–504
504
8
C. Garb et Al. / Structural Integrity Procedia 00 (2017) 000–000
Frac Eng Mat Struct 2004;27:559–70. González R, González A, Talamantes-Silva J, Valtierra S, Mercado-Solís RD, Garza-Montes-de-Oca NF, et al. Fatigue of an aluminium cast alloy used in the manufacture of automotive engine blocks. International Journal of Fatigue 2013;54:118–26. González R, Martínez DI, González JA, Talamantes J, Valtierra S, Colás R. Experimental investigation for fatigue strength of a cast aluminium alloy. International Journal of Fatigue 2011;33(2):273–8. Javidani M, Larouche D. Application of cast Al–Si alloys in internal combustion engine components. International Materials Reviews 2014;59(3):132–58. Konečná R, Nicoletto G, Ku nz L, Riva E. The role of elevated temperature exposure on structural evolution and fatigue strength of eutectic AlSi12 alloys. International Journal of Fatigue 2016;83:24–35. Linder J, Axelsson M, Nilsson H. The influence of porosity on the fatigue life for sand and permanent mould cast aluminium. International Journal of Fatigue 2006;28(12):1752–8. Lu L, Nogita K, Dahle AK. Combining Sr and Na additions in hypoeutectic Al–Si foundry alloys. Materials Science and Engineering: A 2005;399(1-2):244–53. Mattos J, Uehara AY, Sato M, Ferreira I. Fatigue properties and micromechanism of fracture of an alsimg0.6 cast alloy used in diesel engine cylinder head. Procedia Engineering 2010;2(1):759–65. Mbuya TO, Sinclair I, Moffat AJ, Reed P. Micromechanisms of fatigue crack growth in cast aluminium piston alloys. International Journal of Fatigue 2012;42:227–37. McKelvey SA, Lee Y-L, Barkey ME. Stress-Based Uniaxial Fatigue Analysis Using Methods Described in FKM Guideline. J Fail. Anal. and Preven. 2012;12(5):445–84. Mohamed A, Samuel FH, kahtani SA. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Materials Science and Engineering: A 2013;577:64–72. Özdeş H, Tiryakioğlu M. On estimating high -cycle fatigue life of cast Al-Si-Mg-(Cu) alloys from tensile test results. Materials Science and Engineering: A 2017;688:9–15. Sonsino CM, Dieterich K. Einfluß der Porosität auf das Schwingfestigkeitsverhalten von Aluminium Gußwerkstoffen - Teil 2. Giessereiforschung 43 1991(4):131–40. Tabibian S, Charkaluk E, Constantinescu A, Guillemot G, Szmytka F. Influence of process-induced microstructure on hardness of two Al–Si alloys. Materials Science and Engineering: A 2015;646:190–200. Yang H, Ji S, Fan Z. Effect of heat treatment and Fe content on the microstructure and mechanical properties of die cast Al–Si–Cu alloys. Materials & Design 2015;85:823–32. Zhang G, Sonsino CM. Einfluss der Porosität auf die Schwingfestigkeit von Proben und Bauteilen aus Aluminiumdruckguss. Mat.-wiss. u. Werkstofftech. 2004;35(3):125–34. Zhu X, Shyam A, Jones J, Mayer H, LASECKI J, Allison J. Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles. International Journal of Fatigue 2006;28(11):1566–71.
Made with FlippingBook Annual report maker