PSI - Issue 6
Anna Kudimova et al. / Procedia Structural Integrity 6 (2017) 301–308 Author name / Structural Integrity Procedia 00 (2017) 000–000
308
8
Acknowledgements
The work was supported by the Ministry of Education and Science of Russia, competitive part of state assignment, project No. 9.1001.2017 / PCh, and project No. 9.5070.2017 / VU for the corresponding author.
References
Akdogan, E.K., Allahverdi M., Safari, A., 2005. Piezoelectric composites for sensor and actuator applications, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 52, 746–775. Bathe, K.J., Wilson, E.L., 1976. Numerical methods in finite elements analysis, Prentice-Hall, Englewood Cli ff s, NJ. Belokon, A.V., Eremeyev, V.A., Nasedkin, A.V., Soloviev, A.N., 2000. Partitioned schemes of the finite-element method for dynamic problems of acoustoelectroelasticity. J. Appl. Math. Mech. (PMM) 64(3), 367–377. Belokon, A.V., Nasedkin, A.V., Soloviev, A.N., 2002. New schemes for the finite-element dynamic analysis of piezoelectric devices. J. Applied Math. Mech. (PMM) 66(3), 481–490. Benzi, M., Golub, G.H., Liesen, J., 2005. Numerical solution of saddle point problems. Acta Numerica 14, 1–137. Benzi, M., Wathen, A.J., 2008. Some preconditioning techniques for saddle point problems. In:“ Model Order Reduction: Theory, Research Aspects and Applications ”. Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (Eds.). Mathematics in Industry 13, 195–211. Eremeyev, V.A., Nasedkin, A.V., 2017. Mathematical models and finite element approaches for nanosized piezoelectric bodies with uncoulped and coupled surface e ff ects. In.: “ Methods of wave dynamics and mechanics of composites for analysis of microstructured materials and metamaterials. Ser. Advanced Structured Materials ”. vol. 59, Sumbatyan, M.A. (Ed.). Springer, Singapore, pp. 1–18. Getman, I., Lopatin, S., 1996. Theoretical and experimental investigation of the porous PZT ceramics. Ferroelectrics 186, 301–304. Iyer, S., Venkatesh, T.A., 2014. Electromechanical response of (3-0, 3-1) particulate, fibrous, and porous piezoelectric composites with anisotropic constituents: A model based on the homogenization method. Int. J. Solids Struct. 51, 1221–1234. Kara, H., Ramesh, R., Stevens, R., Bowen, C.R., 2003. Porous PZT ceramics for receiving transducers. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50, 289–296. Kurbatova, N.V., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Skaliukh, A.S., Soloviev, A.N. Models of active bulk compos ites and new opportunities of ACELAN finite element package. In.: “ Methods of wave dynamics and mechanics of composites for analysis of microstructured materials and metamaterials. Ser. Advanced Structured Materials ”. vol. 59, Sumbatyan, M.A. (Ed.). Springer, Singapore, pp. 133–158. Martinez-Ayuso, G., Friswell, M.I., Adhikari, S., Khodaparast, H.H., Berger, H., 2017. Homogenization of porous piezoelectric materials. Int. J. Solids Struct. 113–114, 218–229. Marutake, M., Ikeda, T., 1956. Elastic constants of porous materials, especially of BaTiO3 ceramics. J. Phys. Soc. Jap. 11, 814–818. Nasedkin, A.V., 2010. Some finite element methods and algorithms for solving acousto-piezoelectric problems. In: “ Piezoceramic Materials and Devices ”. Parinov, I.A. (Ed.). Nova Science Publ., NY, pp. 177–218. Nasedkin, A.V., 2016. Finite element design of piezoelectric and magnetoelectric composites with use of symmetric quasidefinite matrices. In: “ Advanced Materials – Studies and Applications ”. Parinov, I.A., Chang, S.-H., Theerakulpisut, S. (Eds.). Nova Science Publ., NY, pp. 109– 124. Nasedkin, A., Skaliukh, A., Soloviev, A., 2014. New models of coupled active materials for finite element package ACELAN. AIP Conf. Proc. 1637, 714–723. Nasedkin, A.V., Shevtsova, M.S., 2011. Improved finite element approaches for modeling of porous piezocomposite materials with di ff erent con nectivity. In: “ Ferroelectrics and Superconductors: Properties and Applications ”. Parinov, I.A. (Ed.). Nova Science Publ., NY, pp. 231–254. Nasedkin, A.V., Shevtsova, M.S., 2013. In: Physics and Mechanics of New Materials and Their Applications. I. A. Parinov; S.-H. Chang (Eds.); NNova Science Publ., NY, pp. 185–202. Newnham, R.E., Skinner, D.P., Cross ,L.E., 1978. Connectivity and piezoelectric – pyroelectric composites. Mater. Res. Bull. 13(5), 525–536. Nguyen, B.V., Challagulla, K.S., Venkatesh, T.A., Hadjiloizi, D.A., Georgiades, A.V., 2016. E ff ects of po-rosity distribution and porosity volume fraction on the electromechanical properties of 3-3 piezoelectric foams. Smart Materials and Structures. 25(12), 125028. Skaliukh, A., Nasedkin, A., Oganesyan, P., Soloviev, A., 2015. Linear and nonlinear models of electroelasticity in the software package ACELAN. In: “ 2015 Joint IEEE International Symposium on Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoresponse Force Microscopy Workshop (PFM) (ISAF-ISIF-PFM 2015), 24 - 27 May, 2015s ”. Singapore, IEEE Conf. Publ., pp. 36–39. Ringgaard, E., Lautzenhiser, F., Bierregaard, L. M., Zawada, T., Molz, E., 2015. Development of porous piezoceramics for medical and sensor applications. Materials 8(12), 8877–8889. Rybyanets, A.N., 2011. Porous piezoceramics: theory, technology, and properties. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58, 1492–1507. Rybianets, A.N., Nasedkin, A.V., Turik, A.V., 2004. New microstructural design concept for polycrystalline composite material. Integrated Ferro electrics 63, 179–182. Topolov, V.Yu., Bowen, C.R., 2009. Electromechanical properties in composites based on ferroelectrics. Springer, London. Vanderbei, R.J., 1995. Symmetric quasidefinite matrices. SIAM J. Optim. 5, 100–113. Wersing, W., Lubitz, K., Mohaupt, J., 1986. Dielectric, elastic and piezoelectric properties of porous PZT ceramics. Ferroelectrics 68(1), 77–79. Zienkewicz, O.C. Morgan, K., 1983. Finite elements and approximation, John Wiley and Sons, NY.
Made with FlippingBook. PDF to flipbook with ease