PSI - Issue 6
Yu. L. Rutman et al. / Procedia Structural Integrity 6 (2017) 208–215 Author name / Structural Integrity Procedia 00 (2017) 000–000
213
0
r
u X
Y
0 , X v X i C
Y
, Y w Z
cos
sin
sin
cos
Finally, we obtain:
AB C
i
i
i
i
i
C
0
0
0
0
0
sin ,0
r
X
Y
Y
X
cos
, sin
cos
BC
i
i
i
i
0
0
0
0
i C R R ;
iC C M M ;
i iC BC r R M
i
j
k
M
X
Y
Y
X
cos
sin
cos
sin
0
iC
i
i
i
i
0
0
0
0
X R
R
R
ix
iy
iz
i Y
R j X
Y
ix iz R
cos
sin
cos
sin
i
i
iz
i
i
0
0
0
0
k X
Y
iy R Y
X
R
cos
sin
cos
sin
i
i
i
i
0
0
0
0
2.4. Third group of equations
The second group of equations describes the relationship between the devices internal forces (or bearings internal forces) and the PS attachment points displacements. The internal force R i in the bar AB is determined in the following way: AB AA i r r r , i i k r R , AB AA i i r k r
r r
AB AB
AB AB
r R R r
B A B A B X X Y Y Z , , , r AA The length of the rod of the bearing when t ≠ 0 is AB r 0 0,0, Z
2 2 2 iz iy r
r r l
i
ix
The deformation of the rod is 0 l Z l i i The reaction components are
r
i iy
i ix
i iz
i l R k l r l R k l r The total reactions relatively to the center of mass are: i C R R ; ix x R R ; iy y R R ; iz z R R ix , i iy l R k l , i iz
The moment of one reaction relatively to C is:
i iC BC r R M The total moment of all bearing reactions, constituting the relatively to C is: iC C M M
Made with FlippingBook. PDF to flipbook with ease