PSI - Issue 6

Giulio Zuccaro et al. / Procedia Structural Integrity 6 (2017) 236–243 Author name / Structural Integrity Procedia 00 (2017) 000–000

242

7

2

2

4

4

2

3

1.5

1.5

3.5

3.5

1.5

2.5

1

1

3

3

1

2

0.5

0.5

2.5

2.5

0.5

0

0

2

2

0

1.5

y

y

y

eq (Maugis, 1992)

1 (Maugis, 1992) -0.5

2 (Maugis, 1992) -0.5

-0.5

1.5

1.5

1

-1

-1

1

1

-1

0.5

-1.5

-1.5

-1.5

0.5

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x -2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x -2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x -2

0

0

0

(a) σ 11

(b) σ 22

(c) Equivalent σ (Von Mises)

2

2

4

4

2

3

1.5

1.5

3.5

3.5

1.5

2.5

1

1

3

3

1

2

0.5

0.5

2.5

2.5

0.5

0

0

2

2

0

1.5

y

y

y

eq (Present)

1 (Present)

2 (Present)

-0.5

-0.5

1.5

1.5

-0.5

1

-1

-1

1

1

-1

0.5

-1.5

-1.5

-1.5

0.5

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x -2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x -2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x -2

0

0

0

(d) σ 11

(e) σ 22

(f) Equivalent σ (Von Mises)

Fig. 2. Stress fields produced by uniform loading. Solution by Maugis (1992) (above), and by the proposed approach (below).

compared with the plot of the solution provided by Maugis (1992). As shown in Fig. 2 almost identical results are obtained in terms of stresses by applying Equation (14).

Acknowledgements

Financial support from the Italian Ministry of Education, University and Research (MIUR) in the framework of the Project PRIN ”COAN 5.50.16.01” code 2015JW9NJT is gratefully acknowledged

References

Chiu, Y.P., 1980. On the internal stresses in a half plane and a layer containing localized inelastic strains or inclusions. Journal of Applied Mechanics 47, 313–318. D’Urso, M.G., 2012. New Expressions of the Gravitational Potential and Its Derivatives for the Prism. VII Hotine–Marussi Symposium on Mathematical Geodesy: Proceedings of the Symposium in Rome, 6–10 June, 2009. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 251– 256. D’Urso, M.G., 2013. On the evaluation of the gravity e ff ects of polyhedral bodies and a consistent treatment of related singularities. Journal of Geodesy 87 , 239–252. D’Urso, M.G., 2014a. Analytical computation of gravity e ff ects for polyhedral bodies. Journal of Geodesy 88 , 13–29. D’Urso, M.G., 2014b. Gravity e ff ects of polyhedral bodies with linearly varying density. Celestial Mechanics and Dynamical Astronomy 120 , 349–372. D’Urso, M.G., 2015. The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surveys in Geophysics 36, 391–425. D’Urso, M.G., 2016. A Remark on the Computation of the Gravitational Potential of Masses with Linearly Varying Density.. VIII Hotine–Marussi International Symposium on Mathematical Geodesy. Springer Berlin Heidelberg, Berlin, Heidelberg. D’Urso, M.G., Marmo, F., 2013. On a generalized Love’s problem. Computers & Geosciences 61, 144–151. D’Urso, M.G., Marmo, F., 2015. Vertical stress distribution in isotropic half-spaces due to surface vertical loadings acting over polygonal domains. Zeit. Ang. Math. Mech. 95 , 91–110.

Made with FlippingBook. PDF to flipbook with ease