PSI - Issue 5

ScienceDirect Available online at www.sciencedirect.com Av ilable o line at ww.sciencedire t.com ienceDirect Structural Integrity Procedia 00 (2016) 000 – 000 Procedia Structu al Integrity 5 (2017) 777–784 Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2017) 000 – 000 il l li t . i i t. tr t r l I t rit r i ( )

www.elsevier.com/locate/procedia . l i r. /l t / r i

www.elsevier.com/locate/procedia

XV Portuguese Conference on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine P. Brandão a , V. Infante b , A.M. Deus c * a Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal b IDMEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal c CeFEMA, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal Abstract During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 2nd International Conference on Structural Integrity, ICSI 2017, 4-7 September 2017, Funchal, Madeira, Portugal Brittle Fracture Modeling for Steel Structures operated in the Extreme Valeriy Lepov a *, Albert Grigoriev a , Mbelle Samu l Bisong b , Kyunna Lepova a a V.P.Larionov’s Institute of Physical -Technical Problems of the North SB RAS, Yakutsk-677980, Russia, Oktyabrskaja, 1 b ENSET Douala, Cameroon Abstract T h e Ext re m e h ere i s an e nv ir onm e nt that c onta i ns c ond i t i ons that a re ha r d to s ur v i v e e v e n fo r st ee l st ruc t ure s d ue to e xt re m e t e mp er at ure , c o rr os i on, i napp r op ri at e s er v ice and re pa ir . S o not only th e m ec han ic al p r op er t ie s and b e hav i o r of st ee l st ruc t ure s a re i mpo r tant fo r st ruc t ur al i nt egri ty b u t also th e phas e t r ans i t i on p r o ce ss e s, i nhomo ge n ei ty and u n cer ta i nty fa c to r s. T h e s e p r obl e ms a re obs er v e d and d i s cu ss e d i n th e pap er c ons i st i n g of th ree ma i n th e o re t ic al pa r ts: th e m u lt i s c al e mod e l i n g app r a c h f r st ruc t ur al dama ge a ccu m u lat i on, th e th e o r y of low - t e mp er at ure b ri ttl e- d uc t i l e t r ans i t i on fo r b cc st ee ls, and u n cer ta i nty fa c to r s e st i mat i on c on ce pt. T e appl ic at i ons d e s cri b e th e lo c omot i v e t ire l i f e t i m e e st i mat i on at low t e mp er at ure c ond i t i ons, w e ld i nhomo ge n ei ty c al cu lat i n and b ri d ge s er v ice l i f p re d ic t i on. T h e mod e l i n g app r oa c h bas e d on Ka c hanov - R abotnov st ruc t ur al dama ge a ccu m u lat i on th e o r y and sto c hast ic cr a c k gr owth mod e l i n g . B ay e s i an p r obab i l i ty app r oa c h has b ee n u s e d f r u n cer ta i nty fa c to r e st i mat i on. T h e e xp eri m e ntal re s e a rc h i n c l u d e d th e i nt er nal f ric t i on st u dy of b cc st ee l, th e m ec han ic al t e ns i on and i mpa c t to ug hn e ss t e st i n g fo r p r ob e s p re pa re d f r om u s e d i n c l i mat ic c ond i t i on of C e nt r al Y ak u t i a lo c omot i v e t ire st ee l, th e low -c y c l i n g t e st i n g fo r w e ld e d st ee l p r ob e s, and m icr oha r dn e ss e st i mat i on. T h e i nhomo ge n ei ty of p r ob e s u s e d fo r st re ss and st r a i n stat e mod e l i n g . T h e m icr ost ruc t ur al st u dy re v e als th e small cr a c k s i n h e at aff ec t e d z on e so th e s i z e and d i stan ce b e tw ee n s uc h d e f ec ts u s e d fo r sto c hast ic mod e l i n g v i s u al i z at i on of cr a c k p r opa g at i on and cr a c k v e lo ci ty e st i mat i on. T h e c on ce pt of s er v ice l i f e e st i mat i on fo r w e ld e d st ee l b e a ri n g fo r b ri d ge s has b ee n p re s e nt e d. © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ICSI 2017. e a . . i ’ I tit t f i l - i l l f t t , t - , ia, Oktyabrskaja, 1 b EN l , i i i i i v i f l , i , i i i i . l i l i i f l i f l i i l i i , i i i f . l i i i i f i i l : l i l l i f l l i , f l t i l i l i i f l , i f i t i . l i i i l i i l i f i i i l i i , l i i l l i i i l i f i i . l i l l i i l i . i i l i f i f i i . i l i l i l f i i f l, i l i i i f f i l i ic c i i f e r l u i l c i e ire ee l, e l l i i f l l , i r i t i . i i f r e u e f r re r i l i . m i uc ur l u re e l e ll cr c i e ff ec e e e i e i s uc e f ec u s e f r c ic e l i g i u l i i f cr c r g i cr c e l ci e i i . e c ce f s er ice l i f e e i i f r l l i f i . t . li l i . . Peer-revi e p i ilit t i ti i itt . © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ICSI 2017 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. Keywords: High Pressure Turbine Blade; Creep; Finite Element Method; 3D Model; Simulation. Keywords: Extreme environment; mechanical behavior; low-cycle fatigue; fatigue; giga-cycle fatigue; brittle fracture; damage accumulation; structural modeling; welded steel probes; locomotive tire; microhardness; stress state; stochastic crack growth; service life; i r; l - l f ti ; f ti ; i - l f ti ; rittl fr t r ; l ti ; tr t r l li ; l t l r ; l ti tir ; i r r ; tr t t ; t ti r r t ; r i lif ; : tr ir t; i l

* Corresponding author. Tel.: +7-411-239-0578; fax: +7-411-239-0599. E-mail address: lepov@iptpn.ysn.ru i t r. l.: - - - ; f : - - - . - il : l i t . .r rr

2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. 2452-3216  2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ICSI 2017 10.1016/j.prostr.2017.07.169 * Corresponding author. Tel.: +351 218419991. E-mail address: amd@tecnico.ulisboa.pt 2452-3216 © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ICSI 2017. l i r . . i i ilit t i ti i itt . - t r . li

Made with FlippingBook - Online catalogs