PSI - Issue 5

Behzad V. Farahani et al. / Procedia Structural Integrity 5 (2017) 584–591 Behzad V. Farahani et al./ Structural Integrity Procedia 00 (2017) 000 – 000

591

8

Carrera, E., 1998. Evaluation of Layer-Wise Mixed Theories for Laminated Plate Analysis. AIAA Journal , 36(5), pp.830 – 839. Carrera, E. et al., 2011. Plates and shells for smart structures : classical and advanced theories for modeling and analysis , Wiley. Cauchy, A., 1828. Sur l’equilibre et le mouvement d’une plaque solide. Exercise Math. , 3, pp.381 – 412. Fasshauer, G.E., 2002. Newton iteration with multiquadrics for the solution of nonlinear pdes,. Computers & Mathematics with Applications , 43(3 – 5), pp.423 – 438. Fasshauer, G.E. & Zhang, J.G., 2007. On choosing “optimal” shape parameters for RBF approximation. Numerical Algorithms , 45(1 – 4), pp.345 – 368. Ferreira, A.J.M., 2003a. A Formulation of the Multiquadric Radial Basis Function Method for the Analysis of Laminated Composite Plates. Composite Structures , 59(3), pp.385 – 392. Ferreira, A.J.M. et al., 2011. Analysis of Thick Isotropic and Cross-Ply Laminated Plates by Radial Basis Functions and Unified Formulation. Journal of Sound and Vibration , 330(4), pp.771 – 787. Ferreira, A.J.M., 2003b. Thick Composite Beam Analysis Using a Global Meshless Approximation Based on Radial Basis Functions. Mechanics of Advanced Materials and Structures , 10(3), pp.271 – 284. Ferreira, A.J.M., Roque, C.M.C. & Martins, P.A.L.S., 2005. Analysis of Thin Isotropic Rectangular and Circular Plates with Multiquadrics. Strength of Materials , 37(2), pp.163 – 173. Ferreira, A.J.M., Roque, C.M.C. & Martins, P.A.L.S., 2004. Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates. Composite Structures , 66(1), pp.287 – 293. Kansa, E.J., 1990a. Multiquadrics — A scattered data approximation scheme with applications to computational fluid-dynamics — I surface approximations and partial derivative estimates. Computers &Mathematics with Applications , 19(8 – 9), pp.127 – 145. Kansa, E.J., 1990b. Multiquadrics — A scattered data approximation scheme with applications to computational fluid-dynamics — II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & Mathematics with Applications , 19(8 – 9), pp.147 – 161. Kapania, R.K. & Raciti, S., 1989. Recent Advances in Analysis of Laminated Beams and Plates. Part 1: Shear Effects and Buckling. AIAA Journal , 27(7), pp.923 – 934. Kirchhoff, G., 1850. U ber das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. , 40, pp.51 – 88. Koiter, W., 1960. consistent first approximation in the general theory of thin elastic shells. In Proceedings of First Symposium on the Theory of Thin Elastic Shells. Larsson, E. & Fornberg, B., 2005. Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Computers & Mathematics with Applications , 49(1), pp.103 – 130. Liu, G.R. & Gu, Y.T., 2001. A local radial point interpolation method (lrpim) for free vibration analyses of 2-d solids. Journal of Sound and Vibration , 246(1), pp.29 – 46. Love, A., 1906. A Treatise on the Mathematical Theory of Elasticity , Cambridge University Press. Mindlin, R.D., 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech , 18, pp.31 – 38. Poisson, S., 1829. Memoire sur l’equilibre et le mouvement des corps elastiques. M´em. Acad. Sci. Paris , 8, pp.357 – 570. Reddy, J.N., 1997. Mechanics of laminated composite plates and shells : theory and analysis , CRC Press. Reissner, E., 1945. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech , 12, pp.69 – 77. Roque, C.M.C. & Ferreira, A.J.M., 2009. New developments in the radial basis functions analysis of composite shells. Composite Structures , 87(2), pp.141 – 150. Roque, C.M.C. & Ferreira, A.J.M., 2009. Numerical experiments on optimal shape parameters for radial basis functions. Numerical Methods for Partial Differential Equations , 26(3), pp.675 – 689. Roque, C.M.C., Ferreira, A.J.M. & Jorge, R.M.N., 2010. An Optimized Shape Parameter Radial Basis Function Formulation for Composite and Sandwich Plates using Higher Order Formulations. Journal of Sandwich Structures and Materials , 12(3), pp.279 – 306. Schaback, R. & Wendland, H., 2001. Characterization and construction of radial basis functions. Multivariate approximation and applications , pp.1 – 24. Timoshenko, S. & Woinowsky-Krieger, S., 1959. Theory of Plates and Shells 2nd ed., New York: McGraw-Hill International Editions. Wang, J.G. & Liu, G.R., 2002. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering , 54(11), pp.1623 – 1648. Wang, J.G. & Liu, G.R., 2002. On the optimal shape parameters of radial basis functions used for 2-Dmeshless methods. Computer Methods in Applied Mechanics and Engineering , 191(23), pp.2611 – 2630. Wendland, H., 2005. Scattered data approximation , Cambridge University Press.

Made with FlippingBook - Online catalogs