PSI - Issue 45

95

8

Xiaochen Wang/ Structural Integrity Procedia 00 (2023) 000 – 000

Carpenter, H. J., Ghayesh, M. H., Zander, A. C., Psaltis, P. J. 2023. On the nonlinear relationship between wall shear stress topology and multi directionality in coronary atherosclerosis. Computer Methods and Programs in Biomedicine, 231, 107418. Carpenter, H. J., Gholipour, A., Ghayesh, M. H., Zander, A. C., Psaltis, P. J. 2021. In vivo based fluid – structure interaction biomechanics of the left anterior descending coronary artery. Journal of Biomechanical Engineering, 143, 081001. Cornuz, J., Sidoti Pinto, C., Tevaearai, H., Egger, M. 2004. Risk factors for asymptomatic abdominal aortic aneurysm: Systematic review and meta analysis of population-based screening studies. European Journal of Public Health, 14, 343-349. Coutard, M., Touat, Z., Houard, X., Leclercq, A., Michel, J.-B. 2010. Thrombus versus wall biological activities in experimental aortic aneurysms. Journal of vascular research, 47, 355-366. Di Achille, P., Celi, S., Di Puccio, F., Forte, P. 2011. Anisotropic AAA: computational comparison between four and two fiber family material models. Journal of Biomechanics, 44, 2418-26. Di Martino, E. S., Bohra, A., Vande Geest, J. P., Gupta, N., Makaroun, M. S., Vorp, D. A. 2006. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. Journal of Vascular Surgery, 43, 570-576. Doyle, B. J., Norman, P. E. 2016. Computational biomechanics in thoracic aortic dissection: today's approaches and tomorrow's opportunities. Annals of Biomedical Engineering, 44, 71-83. Haller, S. J., Crawford, J. D., Courchaine, K. M., Bohannan, C. J., Landry, G. J., Moneta, G. L., Azarbal, A. F., Rugonyi, S. 2018. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. Journal of Vascular Surgery, 67, 1051-1058.e1. Khaniki, H. B., Ghayesh, M. H., Chin, R., Amabili, M. 2023, Hyperelastic structures: A review on the mechanics and biomechanics. International Journal of Non-Linear Mechanics, 148, 104275. Li, Z.-Y., U-King-Im, J., Tang, T. Y., Soh, E., See, T. C., Gillard, J. H. 2008. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. Journal of Vascular Surgery, 47, 928-935. Mooney, M. 1940. A theory of large elastic deformation. Journal of Applied Physics, 11, 582-592. Morbiducci, U., Gallo, D., Cristofanelli, S., Ponzini, R., Deriu, M. A., Rizzo, G., Steinman, D. A. 2015. A rational approach to defining principal axes of multidirectional wall shear stress in realistic vascular geometries, with application to the study of the influence of helical flow on wall shear stress directionality in aorta. Journal of Biomechanics, 48, 899-906. Murphy, J. G. 2013. Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. European Journal of Mechanics - A/Solids, 42, 90-96. Mutlu, O., Salman, H. E., Al-Thani, H., El-Menyar, A., QidwaiI, U. A., Yalcin, H. C. 2023. How does hemodynamics affect rupture tissue mechanics in abdominal aortic aneurysm: Focus on wall shear stress derived parameters, time-averaged wall shear stress, oscillatory shear index, endothelial cell activation potential, and relative residence time. Computers in Biology and Medicine, 154, 106609. Qiu, Y., Wang, Y., Fan, Y., Peng, L., Liu, R., Zhao, J., Yuan, D., Zheng, T. 2019. Role of intraluminal thrombus in abdominal aortic aneurysm ruptures: A hemodynamic point of view. Medical Physics, 46, 4263-4275. Raghavan, M. L., Kratzberg, J., Castro de Tolosa, E. M., Hanaoka, M. M., Walker, P., Da Silva, E. S. 2006. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. Journal of Biomechanics, 39, 3010-3016. Raghavan, M. L., Webster, M. W., Vorp, D. A. 1996. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Annals of Biomedical Engineering, 24, 573-582. Ranga, A., Mongrain, R., Galaz, R. M., Biadillah, Y., Cartier, R. 2004. Large-displacement 3D structural analysis of an aortic valve model with nonlinear material properties. Journal of Medical Engineering & Technology, 28, 95-103. Ruiz de Galarreta, S., Antón, R., Cazón, A., Finol, E. A. 2017. A methodology for developing anisotropic AAA phantoms via additive manufacturing. Journal of Biomechanics, 57, 161-166. Scotti, C. M., Finol, E. A. 2007. Compliant biomechanics of abdominal aortic aneurysms: a fluid – structure interaction study. Computers and Structures, 85, 1097-1113. Sladojevic, M., Koncar, I., Zlatanovic, P., Stanojevic, Z., Matejevic, D., Vidicevic Novakovic, S., Tasic, J., Mutavdzic, P., Tomic, I., Isakovic, A., Davidovic, L. 2022. Correlation between proteolytic activity and abdominal aortic aneurysm wall morphology with intraluminal thrombus volume. Annals of Vascular Surgery, 87, 487-494. Sommer, G., Gasser, T. C., Regitnig, P., Auer, M., Holzapfel, G. A. 2008. Dissection properties of the human aortic media: An experimental study. Journal of Biomechanical Engineering, 130. Tavares Monteiro, J. A., Da Silva, E. S., Raghavan, M. L., Puech-Leão, P., De Lourdes Higuchi, M., Otoch, J. P. 2014. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms. Journal of Vascular Surgery, 59, 1393-1401.e2. Throop, A., Bukac, M., Zakerzadeh, R. 2022. Prediction of wall stress and oxygen flow in patient-specific abdominal aortic aneurysms: the role of intraluminal thrombus. Biomechanics and Modeling in Mechanobiology, 21, 1761-1779. Tong, J., Cohnert, T., Regitnig, P., Kohlbacher, J., Birner-Gruenberger, R., Schriefl, A. J., Sommer, G., Holzapfer, G. A. 2014. Variations of dissection properties and mass fractions with thrombus age in human abdominal aortic aneurysms. Journal of Biomechanics, 47, 14-23. Vorp, D. A., Lee, P. C., Wang, D. H. J., Makaroun, M. S., Nemoto, E. M., Ogawa, S., Webster, M. W. 2001. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. Journal of Vascular Surgery, 34, 291-299. Wang, D. H. J., Makaroun, M. S., Webster, M. W., Vorp, D. A. 2002. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. Journal of Vascular Surgery, 36, 598-604. Wang, X., Ghayesh, M.H., Kotousov, A., Zander, A.C., Psaltis, P.J. 2022. Wall shear stress for an aorta with aneurysms via computational fluid dynamics. In: Advances in Nonlinear Dynamics. Springer, 27-37. Zambrano, B. A., Gharahi, H., Lim, C., Jaberi, F. A., Choi, J., Lee, W., Baek, S. 2016. Association of intraluminal thrombus, hemodynamic forces, and abdominal aortic aneurysm expansion using longitudinal CT images. Annals of Biomedical Engineering, 44, 1502-1514.

Made with FlippingBook Annual report maker