PSI - Issue 44
Sergio Ruggieri et al. / Procedia Structural Integrity 44 (2023) 1964–1971 Sergio Ruggieri et al./ Structural Integrity Procedia 00 (2022) 000–000
1971
8
References
Aiello, M.A., Ciampoli, P.L, Fiore, A., Perrone, D., Uva, G., 1962. Influence of infilled frames on seismic vulnerability assessment of recurrent building typologies. Ingegneria Sismica, 34(4), 58-80. Cardellicchio, A., Ruggieri, S., Leggieri, V., Uva, G., 2022. View VULMA: Data Set for Training a Machine-Learning Tool for a Fast Vulnerability Analysis of Existing Buildings. Data. 7(1):4. https://doi.org/10.3390/data7010004 CEN, Eurocode 8, 2004. Design of structures for earthquake resistance, EN 1998. European Committee for Standardisation, Brussels. Casolo, S., Biolzi, L., Carvelli, V., Barbieri, G., 2019. Testing masonry blockwork panels for orthotropic shear strength. Construction and Building Materials, 214, 74-92. DOI: 10.1016/j.conbuildmat.2019.04.116 Casolo, S., Neumair, S., Parisi, M.A., Petrini, V., 2000. Analysis of seismic damage patterns in old masonry church facades. Earthquake Spectra, 16(4), 757-773. DOI:10.1193/1.1586138 Cha, Y.J., Choi, W., Büyüköztürk, O., 2017. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Computer ‐ Aided Civil and Infrastructure Engineering, ;32:361–78. https://doi.org/10.1111/mice.12263. Del Gaudio, C., Di Ludovico, M., Polese, M., Manfredi, G., Prota, A., Ricci, P., Verderame, G.M., 2020. Seismic fragility for Italian RC buildings based on damage data of the last 50 years. Bulletin of earthquake engineering, 18(5), 2023-2059. https://doi.org/10.1007/s10518-019-00762-6 Gao, Y., Mosalam, K.M., 2018. Deep transfer learning for image ‐ based structural damage recognition. Computer ‐ Aided Civil and Infrastructure Engineering, 33(9), 748-768. Hak, S., Morandi, P., Magenes, G., Sullivan, T.J., 2012. Damage control for clay masonry infills in the design of RC frame structures. Journal of Earthquake Engineering, 16(S1):1 ‐ 35 Ierimonti, L., Cavalagli, N., Venanzi, I., García-Macías, E., Ubertini, F., 2021. A transfer Bayesian learning methodology for structural health monitoring of monumental structures. Engineering Structures, 247, 113089. ISTAT, 15° Censimento generale della popolazione e delle abitazioni - 9 ottobre 2011, https://istat.it/ Kohrangi, M., Vamvatsikos, D., 2016. INNOSEIS ground motion set for medium seismicity European sites http://innoseis.ntua.gr/medium_record_set.rar Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25. Leggieri, V., Mastrodonato, G., Uva, G., 2022. GIS Multisource Data for the Seismic Vulnerability Assessment of Buildings at the Urban Scale. Buildings, 12(5):523. https://doi.org/10.3390/buildings12050523 Leggieri, V., Ruggieri, S., Zagari, G., Uva, G., 2021. Appraising seismic vulnerability of masonry aggregates through an automated mechanical typological approach. Automation in Construction, 132, 103972. https://doi.org/10.1016/j.autcon.2021.103972 McKenna, F., 2011. OpenSees: a framework for earthquake engineering simulation. Computing in Science and Engineering, 13(4): 58–66. DOI: 10.1109/MCSE.2011.66 Panagiotakos, T.B., Fardis, M.N., 1996. Seismic response of infilled RC frames structures. In 11th world conference on earthquake engineering (No. 225). Polese, M., Gaetani d’Aragona, M., Prota, A., 2019. Simplified approach for building inventory and seismic damage assessment at the territorial scale: an application for a town in southern Italy. Soil dynamics and earthquake engineering, 121, 405-420. https://doi.org/10.1016/j.soildyn.2019.03.028 Rosti, A., Del Gaudio, C., Rota, M., Ricci, P., Di Ludovico, M., Penna, A., Verderame, G.M., 2020. Empirical fragility curves for Italian residential RC buildings. Bulletin of Earthquake Engineering, 1-19. https://doi.org/10.1007/s10518-020-00971-4 Ruggieri, S., Cardellicchio, A., Leggieri, V., Uva, G., 2021a. Machine-learning based vulnerability analysis of existing buildings. Automation in Construction, Volume 132, 103936. https://doi.org/10.1016/j.autcon.2021.103936 Ruggieri, S., Porco, F., Uva, G., Vamvatsikos, D., 2021b. Two frugal options to assess class fragility and seismic safety for low-rise reinforced concrete school buildings in Southern Italy. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-020-01033-5. Silva, V., Akkar, S., Baker, J., Bazzurro, P., Castro, J.M., Crowley, H., Dolsek, M., Galasso, C., Lagomarsino, S., Monteiro, R., Perrone, D., Pitilakis, K., Vamvatsikos, D., 2019. Current challenges and future trends in analytical fragility and vulnerability modeling. Earthquake Spectra, 35(4), 1927-1952. https://doi.org/10.1193/042418EQS101O Uva, G., Raffaele, D., Porco, F., Fiore, A., 2012. On the role of equivalent strut models in the seismic assessment of infilled RC buildings. Engineering Structures, 42, 83-94. Uva, G., Sanjust, C. A., Casolo, S., Mezzina, M., 2016. ANTAEUS project for the regional vulnerability assessment of the current building stock in historical centers. International Journal of Architectural Heritage, 10(1), 20-43. Xie, Y., Ebad Sichani, M., Padgett, J.E., DesRoches, R., 2020. The promise of implementing machine learning in earthquake engineering: a state of-the-art review, Earthquake Spectra 36 (4) 1769–1801, https://doi.org/10.1177/8755293020919419. Zhu, J., Zhang, C., Qi, H., Lu, Z., 2020. Vision-based defects detection for bridges using transfer learning and convolutional neural networks. Structure and Infrastructure Engineering, 16(7), 1037-1049.
Made with FlippingBook flipbook maker