PSI - Issue 44

Roberto Baraschino et al. / Procedia Structural Integrity 44 (2023) 75–82 Roberto Baraschino et al. / Structural Integrity Procedia 00 (2022) 000–000

82

8

conventional damage state transition thresholds in terms of inelastic displacement, that somehow also account for the initial state of the system, can alleviate some of the apparent inconsistencies encountered in the preceding numerical investigations. References Baker, J. W., and Cornell, C. A., 2006. Spectral Shape, Epsilon and Record Selection. Earthquake Engineering and Structural Dynamics. doi: 10.1002/eqe.571. Baltzopoulos, G., Baraschino, R., and Iervolino, I., 2018. On the Number of Records for Structural Risk Estimation in PBEE. Earthquake Engineering & Structural Dynamics. doi: 10.1002/eqe.3145. Baltzopoulos, G., Baraschino, R., Iervolino, I., and Vamvatsikos, D., 2018. Dynamic Analysis of Single-Degree-of-Freedom Systems (DYANAS): A Graphical User Interface for OpenSees. Engineering Structures 177(March),395–408. doi: 10.1016/j.engstruct.2018.09.078. Bojórquez, E., and Iervolino, I., 2011. Spectral Shape Proxies and Nonlinear Structural Response. Soil Dynamics and Earthquake Engineering 31(7),996–1008. doi: 10.1016/j.soildyn.2011.03.006. Bozorgnia, Y., Abrahamson, N. A., al Atik, L., Ancheta, T. D., Atkinson, G. M., Baker, J. W., Baltay, A., Boore, D. M., Campbell, K. W., Chiou, B. S. J., Darragh, R., Day, S., Donahue, J., Graves, R. W., Gregor, N., Hanks, T., Idriss, I. M., Kamai, R., Kishida, T., Kottke, A., Mahin, S. A., Rezaeian, S., Rowshandel, B., Seyhan, E., Shahi, S., Shantz, T., Silva, W., Spudich, P., Stewart, J. P., Watson-Lamprey, J., Wooddell, K., and Youngs, R., 2014. NGA-West2 Research Project. Earthquake Spectra 30(3),973–87. doi: 10.1193/072113EQS209M. Cornell, C. A., and Krawinkler, H., 2000. Progress and Challenges in Seismic Performance Assessment. PEER Center News 3(2),1–3. FEMA, 2005. FEMA-440: Improvement of Nonlinear Static Seismic Analysis Procedures. Prepared by ATC for FEMA, Washington, DC. Goda, K., 2012. Nonlinear Response Potential of Mainshock-Aftershock Sequences from Japanese Earthquakes. Bulletin of the Seismological Society of America 102(5),2139–56. doi: 10.1785/0120110329. Goda, K., 2015. Record Selection for Aftershock Incremental Dynamic Analysis. Earthquake Engineering and Structural Dynamics 44(7),1157– 62. doi: 10.1002/eqe.2513. Ibarra, L. F., Medina, R. A., and Krawinkler, H., 2005. Hysteretic Models That Incorporate Strength and Stiffness Deterioration. Earthquake Engineering and Structural Dynamics 34(12),1489–1511. doi: 10.1002/eqe.495. Iervolino, I., 2017. Assessing Uncertainty in Estimation of Seismic Response for PBEE. Earthquake Engineering & Structural Dynamics 46(10),1711–23. doi: 10.1002/eqe.2883. Iervolino, I., Baltzopoulos, G., Chioccarelli, E., and Suzuki, A., 2017. Seismic Actions on Structures in the Near-Source Region of the 2016 Central Italy Sequence. Bulletin of Earthquake Engineering . Iervolino, I., Chioccarelli, E., and Suzuki, A., 2020. Seismic Damage Accumulation in Multiple Mainshock-Aftershock Sequences. Earthquake Engineering and Structural Dynamics. Jalayer, F., and Cornell, C. A., 2009. Alternative Non-Linear Demand Estimation Methods for Probability-Based Seismic Assessments. Earthquake Engineering and Structural Dynamics 38(8),951–72. doi: 10.1002/eqe.876. Jalayer, F., De Risi, R., and Manfredi, G., 2015. Bayesian Cloud Analysis: Efficient Structural Fragility Assessment Using Linear Regression. Bulletin of Earthquake Engineering 13(4),1183–1203. doi: 10.1007/s10518-014-9692-z. Kazantzi, A. K., and Vamvatsikos, D., 2015. Intensity Measure Selection for Vulnerability Studies of Building Classes. Earthquake Engineering and Structural Dynamics 44(15),2677–94. doi: 10.1002/eqe.2603. Kohrangi, M., Bazzurro, P., and Eeri, M., 2015. Vector and Scalar IM s in Structural Response Estimation : Part II – Building Demand Assessment. Earthquake Spectra 32(3),1–24. doi: 10.1193/053115EQS080M. Lignos, D. G., and Krawinkler, H., 2011. Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading. Journal of Structural Engineering 137(11),1291–1302. doi: 10.1061/(ASCE)ST.1943-541X.0000376. Luco, N., Bazzurro, P., and Cornell, C. A., 2004. Dynamic Versus Static Computation Of The Residual Capacity Of A Mainshock-Damaged Building To Withstand An Aftershock. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada (2405). Luzi, L., Puglia, R., Russo, E., D’Amico, M., Felicetta, C., Pacor, F., Lanzano, G., Çeken, U., Clinton, J., Costa, G., Duni, L., Farzanegan, E., Gueguen, P., Ionescu, C., Kalogeras, I., Özener, H., Pesaresi, D., Sleeman, R., Strollo, A., and Zare, M., 2016. The Engineering Strong - Motion Database: A Platform to Access Pan - European Accelerometric Data. Seismological Research Letters 87(4),987–97. doi: 10.1785/0220150278. McKenna, F., 2011. OpenSees: A Framework for Earthquake Engineering Simulation. Computing in Science and Engineering 13(4),58–66. doi: 10.1109/MCSE.2011.66. Pacor, F., Felicetta, C., Lanzano, G., Sgobba, S., Puglia, R., D’Amico, M., Russo, E., and Baltzopoulos, G., 2018. NESS1 : A Worldwide Collection of Strong- Motion Data to Investigate Near-Source Effects. doi: 10.1785/0220180149. Papadopoulos, A. N., Kohrangi, M., and Bazzurro, P., 2020. Mainshock-Consistent Ground Motion Record Selection for Aftershock Sequences. Earthquake Engineering and Structural Dynamics 49(8),754–71. doi: 10.1002/eqe.3263. Ruiz-García, J., 2012. Mainshock-Aftershock Ground Motion Features and Their Influence in Building’s Seismic Response. Journal of Earthquake Engineering 16(5),719–37. doi: 10.1080/13632469.2012.663154. Sextos, A., de Risi, R., Pagliaroli, A., Foti, S., Passeri, F., Ausilio, E., Cairo, R., Capatti, M. C., Chiabrando, F., Chiaradonna, A., Dashti, S., de Silva, F., Dezi, F., Durante, M. G., Giallini, S., Lanzo, G., Sica, S., Simonelli, A. L., and Zimmaro, P., 2018. Local Site Effects and Incremental Damage of Buildings during the 2016 Central Italy Earthquake Sequence. Earthquake Spectra 34(4),1639–69. doi: 10.1193/100317EQS194M. Vamvatsikos, D., and Cornell, C. A., 2002. Incremental Dynamic Analysis. Earthquake Engineering and Structural Dynamics 31(3),491–514. doi: 10.1002/eqe.141. Zhang, L., Goda, K., de Luca, F., and de Risi, R., 2020. Mainshock-Aftershock State-Dependent Fragility Curves: A Case of Wood-Frame Houses in British Columbia, Canada. Earthquake Engineering and Structural Dynamics 49(9),884–903. doi: 10.1002/eqe.3269.

Made with FlippingBook flipbook maker