PSI - Issue 43

Matthias Oberreiterr et al. / Procedia Structural Integrity 43 (2023) 240–245 Matthias Oberreiter/ Structural Integrity Procedia 00 (2022) 000 – 000

245

6

• The methodology of Tiryakioğlu evaluates the fatigue strength well using shrinkage porosity, but leads to a conservative assessment if all defect types are considered (oxide films and slip planes included). • Murakami’s approach leads to a conservative estimate of the fatigue strength in the case o f microporosiy evaluated by computed tomography. Considering all defects types (porosity, bifilms and slip-areas) lead to a minor conservative fatigue design of 4.7% Acknowledgements The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology, and Development is gratefully acknowledged. References Aigner R, Leitner M, Stoschka M, Hannesschläger C, Wabro T, Ehart R. Modification of a Defect -Based Fatigue Assessment Model for Al-Si Cu Cast Alloys. Materials 2018;11(12). https://doi.org10.3390/ma11122546. Åman M, Okazaki S, Matsunaga H, Marquis GB, Remes H. Interaction effect of adjacent small defects on the fatigue limit of a m edium carbon steel. Fatigue Fract Engng Mater Struct 2017;40(1):130 – 44. https://doi.org10.1111/ffe.12482. Beretta S, Murakami Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials. Fat Frac Eng Mat Struct 1998;21(9):1049 – 65. https://doi.org10.1046/j.1460-2695.1998.00104.x. Boileau JM. The effect of solidification time on the mechanical properties of a cast 319 aluminium alloy. Dissertation. Wayne State University: Detroit, Michigan; 2000. Feikus FJ, Bernsteiner P, Gutiérrez RF, Łuszczak M. Weiterentwicklungen bei Gehäusen von Elektromotoren. MTZ Motortech Z 2020;81(3):42 – 7. https://doi.org10.1007/s35146-019-0180-5. Gumbel EJ. Statistics of Extremes. Columbia University Press; 1958. Klesnil M, Lukáš P. Influence of strength and stress history on growth and stabilisation of fatigue cracks. Engineering Fracture Mechanics 1972;4(1):77 – 92. https://doi.org10.1016/0013-7944(72)90078-1. Leitner H. Simulation des Ermüdungsverhaltens von Aluminiumgusslegierungen. Dissertation. Leoben: Montanuniversität Leoben; 2001. Leitner M, Garb C, Remes H, Stoschka M. Microporosity and statistical size effect on the fatigue strength of cast aluminium alloys EN AC 45500 and 46200. Materials Science and Engineering: A 2017;707:567 – 75. https://doi.org10.1016/j.msea.2017.09.023. Murakami Y. Material defects as the basis of fatigue design. International Journal of Fatigue 2012;41:2 – 10. https://doi.org10.1016/j.ijfatigue.2011.12.001. Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength. International Journal of Fatigue 1994;16(3):163 – 82. https://doi.org10.1016/0142-1123(94)90001-9. Noguchi H, Morishige K, Fujii T, Kawazoe T, Hamada S. Proposal of method for estimation stress intensity factor range on small crack for light metals. In: Proc. 56th JSMS annual meetings; 2007. Nourian-Avval A, Fatemi A. Characterization and Analysis of Porosities in High Pressure Die Cast Aluminum by Using Metallography, X-Ray Radiography, and Micro-Computed Tomography. Materials (Basel, Switzerland) 2020;13(14). https://doi.org10.3390/ma13143068. Nudelis N, Mayr P. A Novel Classification Method for Pores in Laser Powder Bed Fusion. Metals 2021;11(12):1912. https://doi.org10.3390/met11121912. Oberreiter M, Aigner R, Pomberger S, Leitner M, Stoschka M. Impact of microstructural properties on the crack threshold of aluminium castings. Engineering Fracture Mechanics 2021;241:107431. https://doi.org10.1016/j.engfracmech.2020.107431. Romano S, Abel A, Gumpinger J, Brandão AD, Beretta S. Quality control of AlSi10Mg produced by SLM: Metallography versus CT scans for critical defect size assessment. Additive Manufacturing 2019;28:394 – 405. https://doi.org10.1016/j.addma.2019.05.017. Tenkamp J, Koch A, Knorre S, Krupp U, Michels W, Walther F. Defect-correlated fatigue assessment of A356-T6 aluminum cast alloy using computed tomography based Kitagawa-Takahashi diagrams. International Journal of Fatigue 2018;108:25 – 34. https://doi.org10.1016/j.ijfatigue.2017.11.003. Tiryakioğlu M. Statistical distributions for the size of f atigue-initiating defects in Al – 7%Si – 0.3%Mg alloy castings: A comparative study. Materials Science and Engineering: A 2008;497(1-2):119 – 25. https://doi.org10.1016/j.msea.2008.06.023. Tiryakioğlu M. On the relationship between statistical distributions of d efect size and fatigue life in 7050-T7451 thick plate and A356-T6 castings. Materials Science and Engineering: A 2009;520(1-2):114 – 20. https://doi.org10.1016/j.msea.2009.05.005. Yang Q, Xia C, Deng Y, Li X, Wang H. Microstructure and Mechanical Properties of AlSi7Mg0.6 Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing Based on Cold Metal Transfer (WAAM-CMT). Materials (Basel, Switzerland) 2019;12(16). https://doi.org10.3390/ma12162525. Zerbst U, Madia M, Klinger C, Bettge D, Murakami Y. Defects as a root cause of fatigue failure of metallic components. I: Basic aspects. Engineering Failure Analysis 2019;97:777 – 92. https://doi.org10.1016/j.engfailanal.2019.01.055. Zhang LY, Jiang YH, Ma Z, Shan SF, Jia YZ, Fan CZ, et al. Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy. Journal of Materials Processing Technology 2008;207(1-3):107 – 11. https://doi.org10.1016/j.jmatprotec.2007.12.059.

Made with FlippingBook flipbook maker