PSI - Issue 43

Apolena Šustková et al. / Procedia Structural Integrity 43 (2023) 276–281 Author name / Structural Integrity Procedia 00 (2022) 000 – 000

281

6

5. Conclusion Using data from micro CT and image processing using automatic segmentation by thresholding, computational models were created and a comparative analysis was performed using micro FEM. The main observations of this study may be summarized as follows: 1. It is evident that the change of the threshold (the increasing value of threshold) has an impact on the amount of bone tissue. In this study, the difference in volumes between geometry models 0.25 and 0.65 is up to 38%. 2. The value of E app is decreasing with the increasing value of the threshold and thus with decreasing amount of the bone tissue for both material models. 3. Although the difference between the material used in this study is not so significant, the values of strain intensity and its distribution is dependent on the chosen threshold. Acknowledgement The work was supported by projects FSI-S-20-6164 and FSI-S-20-6175. References Borák, L., Marcián, P., 2017. Inhomogeneous Material Properties Assignment to Finite Element Models of Bone: A Sensitivity Study. Engineering Mechanics 2017, 190 – 193. osta, M. ., Tozzi, G., ristofolini, L., Danesi, V., Viceconti, M., Dall’Ara, E., 2017. Micro Finite Element models of the vertebral body: Validation of local displacement predictions. PLOS ONE 12(7), e0180151. Furukawa, T., Matsunaga, S., Morioka, T., Nakano, T., Abe, S., Yoshinari, M., Yajima, Y., 2019. Study on bone quality in the human mandible Alignment of biological apatite crystallites. Journal of Biomedical Materials Research Part B: Applied Biomaterials 107(3), 838 – 846. Inagawa, H., Suzuki, N., Aoki, K., Wakabayashi, N., 201 . Potential for estimation of Young’s modulus based on computed tomography numbers in bone: A validation study using a nano-indentation test on murine maxilla. Dental, Oral and Craniofacial Research 4(4), 1-7. Kayabaşı, O., Yüzbasıoğlu, E., Erzincanlı, F., 2006. Static, dynamic and fatigue behaviors of dental implant using finite element method. Advances in Engineering Software 37(10), 649 – 658. Kotoul, M., Skalka, P., Ševeček, O., Bertolla, L., Merten s, J., Marcián, P., hawla, N., 201 . rack bridging modelling in Bioglass ® based scaffolds reinforced by poly-vinyl alcohol/microfibrillated cellulose composite coating. Mechanics of Materials 110, 16 – 28. Marcián, P., Borák, L., Zikmund, T., Horáčková, L., Kaiser, J., Joukal, M., Wolff, J., 2021. On the limits of finite element models created from (micro)CT datasets and used in studies of bone-implant-related biomechanical problems. Journal of the Mechanical Behavior of Biomedical Materials 117, 104393. Marcián, P., Konečný, O., Borák, L., Valášek, J., Řehák, K., Krpalek, D., Florian, Z., 2011. On the Level of Computational Models in Biomechanics Depending on Gained Data from CT/MRI and Micro- CT. MENDEL 2011, 255 – 267. Marcián, P., Lošák, P., Kaiser, J., Borák, L., 2016. Estimation of Orthotropic Mechanical Properties of Human Alveolar Bone. Engineering Mechanics 2016, 370 – 373. Misch C., 2008. Contemporary Implant Dentistry (3rd ed.). St Louis, United States: Elsevier - Health Sciences Division. Natali, A. N., Carniel, E. L., Pavan, P. G., 2008. Investigation of bone inelastic response in interaction phenomena with dental implants. Dental Materials 24(4), 561 – 569. Rahmoun, J., Auperrin, A., Delille, R., Naceur, H., Drazetic, P., 2014. Characterization and micromechanical modeling of the human cranial bone elastic properties. Mechanics Research Communications 60, 7 – 14. Schneider, C. A., Rasband, W. S., Eliceiri, K. W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7), 671 – 675. Sekhon, K., Kazakia, G. J., Burghardt, A. J., Hermannsson, B., Majumdar, S., 2009. Accuracy of volumetric bone mineral density measurement in high-resolution peripheral quantitative computed tomography. Bone 45(3), 473 – 479. Shefelbine, S. J., Simon, U ., laes, L., Gold, A., Gabet, Y., Bab, I., Müller, ., Augat, P., 2005. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone, 36(3), 480 – 488. Ševeček, O., Bertolla, L., hlup, Z., Řehořek, L., Majer, Z., Marcián, P., Kotoul, M., 2019. Modelling of cracking of the ceramic foam specimen with a central notch under the tensile load. Theoretical and Applied Fracture Mechanics 100, 242 – 250. Ševeček, O., Papšík, ., Majer, Z., Kotoul, M., 2019. Influence of the cell geometry on the tensile strength of open-cell ceramic foams. Procedia Structural Integrity 23, 553 – 558. van Eijden TMGJ, van der Helm PN, van Ruijven LJ, Mulder L., 2006. Structural and Mechanical Properties of Mandibular Condylar Bone. Journal of Dental Research 85(1), 33-37. van Eijnatten, M., Koivisto, J., Karhu, K., Forouzanfar, T., Wolff, J., 2017. The impact of manual threshold selection in medical additive manufacturing. International Journal of Computer Assisted Radiology and Surgery 12(4), 607 – 615. van Ruijven, L. J., Giesen, E. B. W., Farella, M., van Eijden, T. M. G. J., 2003. Prediction of Mechanical Properties of the Cancellous Bone of the Mandibular Condyle. Journal of Dental Research 82(10), 819 – 823. Viceconti, M., 2011. Multiscale Modeling of the Skeletal System. Cambridge: Cambridge University Press.

Made with FlippingBook flipbook maker