PSI - Issue 43

Tatyana Petrova et al. / Procedia Structural Integrity 43 (2023) 83–88 Author name / Structural Integrity Procedia 00 (2022) 000 – 000

87 5

The respective figures for axial, shear and normal stresses for Case 2 are shown in Fig.3. One can see, that character of 3D plots of Case 2, compared with those for Case 1, are smoother and changes are not so sharp, as for Case 1. In our previous works for stresses in graphene/SU-8/PMMA (Petrova et al. 2022) and graphene/SU-8/PET (Kirilova et al. 2019) the results are very similar to these here, but with larger magnitudes, because of the Young modulus of graphene, which is 1 TPa in respect to that of WS 2 – 272 GPa.

var2

var2, 13-05-22

var2

80000

2.5e+11

8e+7 1e+8

-1e+8 -8e+7 -6e+7 -4e+7 -2e+7 0 2e+7 4e+7 6e+7 8e+7 1e+8

-20000 0 20000 40000 60000 80000

60000

2.0e+11

2e+7 4e+7 6e+7

40000

1.5e+11

yy , Pa

-1e+8 -8e+7 -6e+7 -4e+7 -2e+7 0

xy , Pa

xx 1 , Pa

20000

1.0e+11

0

5.0e+10

1.0406e-6

1.0406e-6

1.0405e-6

1.0405e-6

1.0404e-6

1.0404e-6

1.0403e-6

1.0403e-6

1e-6 2e-6

-20000

1.0402e-6

1.0402e-6

0.0

Y1, m

1e-6 2e-6

3e-6 4e-6

Y1, m

1.0401e-6

3e-6 4e-6

1.0401e-6

0

2e-6

4e-6

6e-6

5e-6 6e-6

5e-6

1.0400e-6

6e-6

7e-6

x, m

7e-6 1.0400e-6

x, m

var2

x, m

var.2

1e+8

-2e+6 -1e+6 0 1e+6 2e+6 3e+6 4e+6 5e+6

5e+6

8e+7

4e+6

6e+7

4e+7

3e+6

2e+7

2e+6

0

a xy , Pa

yy , Pa

1e+6

-2e+7

a

-4e+7

0

-6e+7

1 1.0.00 02 2e e-5-5

-1e+6

1 1.0.00 01 2e e-5-5

1.001e-5

-8e+7

1.001e-5

1.001e-5

-2e+6

1.001e-5

YA, m

1.000e-5

-1e+8

1e-6 2e-6

3e-6 4e-6

1.000e-5

var. 2

0

2e-6

4e-6

6e-6

5e-6 6e-6

1.000e-5

7e-6

var. 2

x, m

x, m

var2

3.002e+9

4e+8

-1e+8 0 1e+8 2e+8 3e+8 4e+8

-1e+8 -8e+7 -6e+7 -4e+7 -2e+7 0 2e+7 4e+7 6e+7 8e+7 1e+8

1e+8

3.000e+9

8e+7

3e+8

2.998e+9

6e+7

2.996e+9

4e+7

2e+8

2e+7

2.994e+9

2 yy , Pa

-1e+8 -8e+7 -6e+7 -4e+7 -2e+7 0

xx 2 , Pa

xy , Pa

2.992e+9

1e+8

2.990e+9

0

1e-5

2.988e+9

1e-5

8e-6

8e-6

6e-6

2.986e+9

6e-6

-1e+8

4e-6

4e-6

1e-6 2e-6

Y2, m

2e-6

Y2, m

1e-6 2e-6

2.984e+9

3e-6 4e-6

2e-6

3e-6 4e-6

0

2e-6

4e-6

6e-6

5e-6 6e-6

5e-6 6e-6

0

0

7e-6

7e-6

x, m

x, m

x, m

Fig. 3. Visualization of the model stresses in the layers of considered WS 2 /SU-8/PMMA, for Case 2.

Another validation of obtained results is presented in Fig. 4. Here, the comparison is made between the results for axial stresses in WS 2 (for Case 1-pink line and for Case 2 – blue line) and shear lag model results of Wang, 2017 (black line). Shear lag results are obtained for 0.35% external strain.

1e+11

8e+10

shear lag axial stress, Wang 2017 Case 2, this work Case1, this work

6e+10

1 xx , Pa

4e+10

2e+10

0

-0.4

-0.2

0.0

0.2

0.4

x/l

Fig. 4. Comparison of model axial stress in WS2 layer for Case 1 and Case 2 with this one obtained with the shear lag method of Wang 2017.

Made with FlippingBook flipbook maker