PSI - Issue 41

Ilham Widiyanto et al. / Procedia Structural Integrity 41 (2022) 274–281 Widiyanto et al. / Structural Integrity Procedia 00 (2022) 000 – 000

281

8

1. With various geometry types, the highest critical buckling load value is found in the S3-1-A model. 2. The meshing size by using a stringer-stiffened cylinder shell geometry type, the highest critical buckling load value uses a meshing size of 40 mm. 3. The diameter size variation using the ring-stiffened cylinder shell model, the highest critical buckling load value is found in the smallest diameter size, which is 711.2 mm. These FEA results need to be experimented with to find accurate results. Apart from that, the results of this study need to be further developed to find the best results. Acknowledgements This work was supported by the RKAT PTNBH Universitas Sebelas Maret - Year 2022, under Research Scheme of “Penelitian Unggulan Terapan” (PUT -UNS), with Research Grant/Contract No. 254/UN27.22/PT.01.03/2022. The support is gratefully acknowledged by the authors. References Cao, B., Bae, D.-M., Sohn, J.-M., Prabowo, A.R., Chen, T.H., Li, H., 2016. Numerical analysis for damage characteristics caused by ice collision on side structure. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE , 8, V008T07A019. DOI: 10.1115/OMAE2016-54727. Fatoba, O., Akid, R., 2014. Low Cycle Fatigue Behaviour of API 5L X65 Pipeline Steel at Room Temperature. Procedia Engineering , 74 , 279 – 286. DOI: 10.1016/j.proeng.2014.06.263. Fazlalipour, N., Showkati, H., Eyvazinejad Fioruzsalari, S., 2021. Buckling behaviour of cylindrical shells with stepwise wall thickness subjected to combined axial compression and external pressure. Thin-Walled Structures , 167 , 108195. DOI: 10.1016/j.tws.2021.108195. GB/T 228.1: Metallic materials – Tensile Testing – Part 1: Method of Test at Room Temperature, 2010. Chinese Standard Institute, China. Guha, I., White, D. J., Randolph, M. F., 2020. Parametric solution of lateral buckling of submarine pipelines. Applied Ocean Research , 98 (January), 102077. DOI: 10.1016/j.apor.2020.102077. Iakovlev, S., 2019. Structural analysis of a submerged fluid-filled cylindrical shell subjected to a shock wave. Journal of Fluids and Structures , 90 , 450 – 477. DOI: 10.1016/j.jfluidstructs.2019.06.001. Jiao, P., Chen, Z., Ma, H., Ge, P., Gu, Y., Miao, H., 2021. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1 : Experimental study. Thin-Walled Structures, 166 , 108118. DOI: 10.1016/j.tws.2021.108118. Li, Z., Pasternak, H., Jäger-Cañás, A., 2021. Buckling of ring-stiffened cylindrical shell under axial compression: Experiment and numerical simulation. Thin-Walled Structures , 164 (May), 107888. DOI: 10.1016/j.tws.2021.107888. Liu, J., Yu, B., Zhou, Y., Zhang, Y., Duan, M., 2021. The buckling of spherical-cylindrical composite shells by external pressure. Composite Structures , 265 , 113773. DOI: 10.1016/j.compstruct.2021.113773. Prabowo, A.R., Baek, S.J., Cho, H.J., Byeon, J.H., Bae, D.M., Sohn, J.M., 2017. The effectiveness of thin-walled hull structures against collision impact. Latin American Journal of Solids and Structures , 14 (7), 1345 – 1360. DOI: 10.1590/1679-78253895. Prabowo, A.R., Muttaqie, T., Sohn, J.M., Bae, D.M., 2018. Nonlinear analysis of inter- island roro under impact: Effects of selected collision’s parameters on the crashworthy double-side structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering , 40 (5), 248. DOI: 10.1007/s40430-018-1169-6. Prabowo, A.R., Bae, D.M., Sohn, J.M., 2019. Comparing structural casualties of the Ro-Ro vessel using straight and oblique collision incidents on the car deck. Journal of Marine Science and Engineering , 7 (6), 183. DOI: 10.3390/jmse7060183. Prabowo, A.R., Muttaqie, T., Sohn, J.M., Harsritanto, B.I.R., 2019. Investigation on structural component behaviours of double bottom arrangement under grounding accidents. Theoretical and Applied Mechanics Letters , 9 (1), 50 – 59. DOI: 10.1016/j.taml.2019.01.010. Prabowo, A.R., Laksono, F.B., Sohn, J.M., 2020. Investigation of structural performance subjected to impact loading using finite element approach: Case of ship-container collision. Curved and Layered Structures , 7 (1), 17 – 28. DOI: 10.1515/cls-2020-0002. Prabowo, A.R., Cao, B., Sohn, J.M., Bae, D.M., 2020. Crashworthiness assessment of thin-walled double bottom tanker: Influences of seabed to structural damage and damage-energy formulae for grounding damage calculations. Journal of Ocean Engineering and Science , 5 (4), 387 – 400. DOI: 10.1016/j.joes.2020.03.002. Prabowo, A.R., Tuswan, T., Ridwan, R., 2021. Advanced development of sensor s’ roles in maritime ‐ based industry and research: From field monitoring to high ‐ risk phenomenon measurement. Applied Sciences , 11 (9), 3954. DOI: 10.3390/app11093954. Yusvika, M., Prabowo, A.R., Tjahjana, D.D.D.P., Sohn, J.M., 2020. Cavitation prediction of ship propeller based on temperature and fluid properties of water. Journal of Marine Science and Engineering , 8 (6), 465. DOI: 10.3390/JMSE8060465. Zaczynska, M., Abramovich, H., Bisagni, C., 2020. Parametric studies on the dynamic buckling phenomenon of a composite cylindrical shell under impulsive axial compression. Journal of Sound and Vibration , 482 , 115462. DOI: 10.1016/j.jsv.2020.115462. Zhang, J., Zhang, M., Tang, W., Wang, W., Wang, M., 2017. Buckling of spherical shells subjected to external pressure: A comparison of experimental and theoretical data. Thin-Walled Structures , 111 , 58 – 64. DOI: /10.1016/j.tws.2016.11.012. Zhang, Z., Liu, H., Chen Z., 2019. Lateral Buckling Theory and Experimental Study on Pipe-in-Pipe Structure . 1 – 16. DOI: 10.3390/met9020185 Zheng, D., Du, J., Liu, Y., 2021. Vibration characteristics analysis of an elastically restrained cylindrical shell with arbitrary thickness variation. Thin-Walled Structures , 165 , 107930. DOI: 10.1016/j.tws.2021.107930. Zhu, Y., Dai, Y., Ma, Q., Tang, W., 2018. Buckling of externally pressurized cylindrical shell: A comparison of theoretical and experimental data. Thin-Walled Structures , 129 , 309 – 316. DOI: 10.1016/j.tws.2018.04.016.

Made with FlippingBook - Online magazine maker