PSI - Issue 41
Saveria Spiller et al. / Procedia Structural Integrity 41 (2022) 158–174 Saveria Spiller/ Structural Integrity Procedia 00 (2019) 000–000
173
16
Caminero, M. Á., Romero, A., Chacón, J. M., Núñez, P. J., García-Plaza, E., & Rodríguez, G. P. (2021). Additive manufacturing of 316L stainless-steel structures using fused filament fabrication technology: mechanical and geometric properties. Rapid Prototyping Journal , 27 (3), 583–591. doi: 10.1108/RPJ-06-2020-0120 Cerejo, F., Gatões, D., & Vieira, M. T. (2021). Optimization of metallic powder filaments for additive manufacturing extrusion (MEX). International Journal of Advanced Manufacturing Technology , 115 (7–8), 2449–2464. doi: 10.1007/s00170-021-07043-0 Chen, H., & Zhao, Y. F. (2016). Process parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing process . 3 (February 2015), 527–538. doi: 10.1108/RPJ-11-2014-0149 Damon, J., Dietrich, S., Gorantla, S., Popp, U., Okolo, B., & Schulze, V. (2019). Process porosity and mechanical performance of fused filament fabricated 316L stainless steel. Rapid Prototyping Journal , 25 (7), 1319–1327. doi: 10.1108/RPJ-01-2019-0002 Dehdari Ebrahimi, N., & Ju, Y. S. (2018). Thermal conductivity of sintered copper samples prepared using 3D printing-compatible polymer composite filaments. Additive Manufacturing , 24 (August), 479–485. doi: 10.1016/j.addma.2018.10.025 Galati, M., & Minetola, P. (2019). Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) process for metal parts. Materials , 12 (24). doi: 10.3390/ma1224122 German, Randall M. (2010a). Coarsening in sintering: Grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems. Critical Reviews in Solid State and Materials Sciences , 35 (4), 263–305. doi: 10.1080/10408436.2010.525197 German, R. M. (2010b). Thermodynamics of sintering. In Sintering of advanced materials: Fundamentals and processes. Woodhead Publishing Limited. doi: 10.1533/9781845699949.1.110 Gibson, I., & Rosen, D. (2021). Additive Manufacturing Technologies . Gloeckle, C., Konkol, T., Jacobs, O., Limberg, W., Ebel, T., & Handge, U. A. (2020). Processing of highly filled polymer–metal feedstocks for fused filament fabrication and the production of metallic implants. Materials , 13 (19), 1–16. doi: 10.3390/ma13194413 Godec, D., Cano, S., Holzer, C., & Gonzalez-Gutierrez, J. (2020). Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17-4PH stainless steel. Materials , 13 (3). doi: 10.3390/ma13030774 Gong, H., Snelling, D., Kardel, K., & Carrano, A. (2019). Comparison of Stainless Steel 316L Parts Made by FDM- and SLM-Based Additive Manufacturing Processes. Jom , 71 (3), 880–885. doi: 10.1007/s11837-018-3207-3 Gonzalez-Gutierrez, J., Arbeiter, F., Schlauf, T., Kukla, C., & Holzer, C. (2019). Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing. Materials Letters , 248 , 165–168. doi: 10.1016/j.matlet.2019.04.024 Gonzalez-Gutierrez, J., Cano, S., Schuschnigg, S., Kukla, C., Sapkota, J., & Holzer, C. (2018). Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives. Materials , 11 (5). doi: 10.3390/ma11050840 Hassan, W., Farid, M. A., Tosi, A., Rane, K., & Strano, M. (2021). The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts. International Journal of Advanced Manufacturing Technology , 114 (9–10), 3057–3067. doi: 10.1007/s00170-021-07047-w Henry, T. C., Morales, M. A., Cole, D. P., Shumeyko, C. M., & Riddick, J. C. (2021). Mechanical behavior of 17-4 PH stainless steel processed by atomic diffusion additive manufacturing. International Journal of Advanced Manufacturing Technology , 114 (7–8), 2103–2114. doi: 10.1007/s00170-021-06785-1 ISO/ASTM. (12636 B.C.E.). Additive Manufacturing - General Principles Terminology (ASTM52900). Rapid Manufacturing Association . Retrieved from http://www.ciri.org.nz/nzrma/technologies.html Jiang, D., & Ning, F. (2022). Anisotropic deformation of 316L stainless steel overhang structures built by material extrusion based additive manufacturing. Additive Manufacturing , 50 (September 2021), 102545. doi: 10.1016/j.addma.2021.102545 Kuotsoan, L., & Hanting, L. (2014). A Study on the relationship between technical development and fundamental patents based on US granted patents. European International Journal of Science and Technology , 2014 (43), 314–327. Kurose, T., Abe, Y., Santos, M. V. A., Kanaya, Y., Ishigami, A., Tanaka, S., & Ito, H. (2020). Influence of the layer directions on the properties of 316l stainless steel parts fabricated through fused deposition of metals. Materials , 13 (11). doi: 10.3390/ma13112493 Lee, I., & Kim, Y. (2015). The recent Patent Analysis and Industrial Trend of 3D Printing. Indian Journal of Science and Technology , 8 (12), 70– 73. doi: 10.17485/ijst/2015/v8iS8/64717 Lengauer, W., Duretek, I., Fürst, M., Schwarz, V., Gonzalez-Gutierrez, J., Schuschnigg, S., Kukla, C., Kitzmantel, M., Neubauer, E., Lieberwirth, C., & Morrison, V. (2019). Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. International Journal of Refractory Metals and Hard Materials , 82 (February), 141–149. doi: 10.1016/j.ijrmhm.2019.04.011 Liu, B., Wang, Y., Lin, Z., & Zhang, T. (2020). Creating metal parts by Fused Deposition Modeling and Sintering. Materials Letters , 263 , 127252. doi: 10.1016/j.matlet.2019.127252 Loh, G. H., Pei, E., Gonzalez-Gutierrez, J., & Monzón, M. (2020). An overview of material extrusion troubleshooting. Applied Sciences (Switzerland) , 10 (14). doi: 10.3390/app10144776 Mark3D . (n.d.). Retrieved from https://www.mark3d.com/en/product/filaments-for-markforged-3d-printers/markforged-17-4-stainless-steel material/ Mueller, S. (2017). 3D printing for human-computer interaction. Interactions , 24 (5), 76–79. doi: 10.1145/3125399 Nurhudan, A. I., Supriadi, S., Whulanza, Y., & Saragih, A. S. (2021). Additive manufacturing of metallic based on extrusion process: A review. Journal of Manufacturing Processes , 66 (December 2020), 228–237. doi: 10.1016/j.jmapro.2021.04.018 Ramazani, H., & Kami, A. (2022). Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review. Progress in Additive Manufacturing , 0123456789 . doi: 10.1007/s40964-021-00250-x Rane, K. (2019). A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts. Advances in Manufacturing , 7 (2), 155–173. doi: 10.1007/s40436-019-00253-6 Rane, K., Castelli, K., & Strano, M. (2019). Rapid surface quality assessment of green 3D printed metal-binder parts. Journal of Manufacturing Processes , 38 (January), 290–297. doi: 10.1016/j.jmapro.2019.01.032 Rosnitschek, T., Tremmel, S., Seefeldt, A., Alber-Laukant, B., Neumeyer, T., & Altstädt, V. (2021). Correlations of geometry and infill degree of extrusion additively manufactured 316l stainless steel components. Materials , 14 (18). doi: 10.3390/ma14185173 Sadaf, M., Bragaglia, M., & Nanni, F. (2021b). A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication.
Made with FlippingBook - Online magazine maker