PSI - Issue 41
M.R.M. Aliha et al. / Procedia Structural Integrity 41 (2022) 87–93 Aliha et al. / Structural Integrity Procedia 00 (2022) 000 – 000
93
7
5. Conclusions In this research the ability of Bi-ASB test specimen to produce any desired deformation of mode I and mode II was proved using several finite element analyses. Due to some advantages such as, simple geometry, modular design of sample for easily producing different mode mixities, small size of sample and ease of test setup compared to conventional test samples, the Bi-ASB sample can be proposed as suitable test candidate for fracture studies of adhesively bonded joints under in-plane loading conditions. The presented fracture parameters (obtained using several finite element analyses and for different geometrical, material and loading conditions) allow the researchers to utilize this specimen for determining the load carrying capacity and analyzing the ABJs made of Bi-ASB test specimen. References [1] da Silva, L. F. M., Öchsner, A., &Adams, R. D. (Eds.). (2011). Handbook of adhesion technology (Vol. 1, p. 1543). Heidelberg: Springer. [2] Standard, I. S. O. Fibre-reinforced plastic composites – determination of mode I interlaminar fracture toughness. GIC, for uni-directionally reinforced materials. [3] ASTM, D. (2014). Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM Standard. [4] AC09349168, A. (Ed.). (2006). Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites. ASTM Internat. [5] Nunes, F. A. A., & Campilho, R. D. S. G. (2018). Mixed-mode fracture analysis of adhesively-bonded joints using the ATDCB test specimen. International Journal of Adhesion and Adhesives, 85, 58-68. [6] Aliha, M. R. M., Kucheki, H. G., & Mirsayar, M. (2021). Mixed Mode I/II Fracture Analysis of Bi-Material Adhesive Bonded Joints Using a Novel Short Beam Specimen. Applied Sciences, 11(11), 5232. [7] Aliha, M. R. M., Kucheki, H. G., & Berto, F. (2022). Numerical analysis of crack initiation angles and propagation paths in adhesively bonded joints under mixed mode I/II loading using a novel test specimen. Procedia Structural Integrity, 39, 393-402. [8] Mousavi, A., Aliha, M. R. M., & Imani, D. M. (2020). Effects of biocompatible Nanofillers on mixed-mode I and II fracture toughness of PMMA base dentures. Journal of the mechanical behavior of biomedical materials, 103, 103566. [9] Mirsayar, M. M. (2019). T-strain effects in kinked interfacial fracture of bonded composites. Theoretical and Applied Fracture Mechanics, 104, 102381. [10] Mirsayar, M. M., & Park, P. (2016). Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. Journal of the mechanical behavior of biomedical materials, 59, 236-240. [11] Mirsayar, M. M., & Park, P. (2015). The role of T-stress on kinking angle of interface cracks. Materials & Design, 80, 12-19. [12] Mirsayar, M. M. (2014). On fracture of kinked interface cracks – The role of T-stress. Materials & Design, 61, 117-123.
Made with FlippingBook - Online magazine maker