PSI - Issue 40

A.I. Chanyshev et al. / Procedia Structural Integrity 40 (2022) 97–104 Chanyshev A.I. at al. / Structural Integrity Procedia 00 (2022) 000 – 000

102

6

0 z  , the presence of cavities, solid inclusions, and so on.

depth

Fig.1. Flying device measuring 3D displacement above the Earth surface.

To solve the problem, we use the equilibrium equations:

2

y u

xy x y    z    

y      yz

2

2

x u

z u

xy               x xz x y z

yz               xt z x y z

2 ,

2 .

2 ,

(22)

t

t

t

Cauchy relations:

u

u

u

1 2 z         u u y z     y

u

  

  

  

  

u

u

u

1 2

1 2

y

y

y

. z

(23)

z 

,

,

,

,

,

x 

y 

x

x

x

yz

xy

xy

z

x

x y

x y

y

 

 

Hooke's law:

1

1

yz

.

(24)

…,

,

,

x 

x        y z

y 

y        x z

yz

2

0 z  . From (21) it

The plan of problem solving is as follows. Let displacements (21) are set on the surface

0 z  deformation xy  is set, and then, owing to (24), the stress xy  is set. Further, 0 z  the displacement x u is known, it follows that x  is set. And, as displacement

follows that on the surface considering that on the surface

y u is known, we define strain y  . At known , , x y z    , stresses

, x y   are found from the first two equations (24):

2 E E           2 1 z x y

2 E E           2 1 z x y

(25)

,

.

x 

y

At known stresses , , x y z    , strain z  is obtained from the third equation (24)         2 3 2 2 2 1 3 2 1 z x y z E E E                    .

(26)

Made with FlippingBook - professional solution for displaying marketing and sales documents online