PSI - Issue 40
N. Kondratev et al. / Procedia Structural Integrity 40 (2022) 239–244 N. Kondratev et. al. / Structural Integrity Procedia 00 (2022) 000 – 000
244
6
DeHoff, R. T., Liu, G. Q., 1985. On the relation between grain size and grain topology. Metallurgical Transactions A, 16(11), 2007-2011. Dillon, S. J., Tai, K., Chen, S., 2016. The importance of grain boundary complexions in affecting physical properties of polycrystals. Current Opinion in Solid State and Materials Science, 20(5), 324-335. Fan, Z., Wu, Y., Zhao, X., Lu, Y., 2004. Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres. Computational materials science, 29(3), 301-308. Fan, H., Aubry, S., Arsenlis, A., El-Awady, J. A., 2015. Orientation influence on grain size effects in ultrafine-grained magnesium. Scripta Materialia, 97, 25-28. Hall, E. O., 1951. Proceedings of the Physical Society. Section B, 64, 747-53. Hirth, J. P., 1972. The influence of grain boundaries on mechanical properties. Metallurgical Transactions, 3(12), 3047-3067. Koneva, N. A., Starenchenko, V. A., Lychagin, D. V., Trishkina, L. I., Popova, N. A., Kozlov, E. V., 2008. Formation of dislocation cell substructure in face-centred cubic metallic solid solutions. Materials Science and Engineering: A, 483, 179-183. Kozlov, E. V., Zhdanov, A. N., Popova, N. A., Pekarskaya, E. E., Koneva, N. A., 2004. Subgrain structure and internal stress fields in UFG materials: problem of Hall – Petch relation. Materials Science and Engineering: A, 387, 789-794. Kumar, S., Kurtz, S. K., Banavar, J. R., Sharma, M. G., 1992. Properties of a three-dimensional Poisson-Voronoi tesselation: A Monte Carlo study. Journal of statistical physics, 67(3), 523-551. Kumar, P., Prakash, O., Ramamurty, U., 2018. Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V. Acta Materialia, 154, 246-260. Liu, G., Yu, H., Qin, X., 2002. Three-dimensional grain topology – size relationships in a real metallic polycrystal compared with theoretical models. Materials Science and Engineering: A, 326(2), 276-281. Matzke, E. B., Nestler, J., 1946. Volume ‐ shape relationships in variant foams. A further s tudy of the rôle of surface forces in three ‐ dimensional cell shape determination. American Journal of Botany, 33(2), 130-144. Morfa, C. R., de Farias, M. M., Morales, I. P. P., de Navarra, E. O. I., Valera, R. R., 2018. Virtual modeling of polycrystalline structures of materials using particle packing algorithms and Laguerre cells. Computational Particle Mechanics, 5(2), 213-226. Nasiri, Z., Ghaemifar, S., Naghizadeh, M., Mirzadeh, H., 2020. Thermal mechanisms of grain refinement in steels: a review. Metals and Materials International, 1-17. Ostanina, T. V., Shveykin, A. I., Trusov P.V., 2020. The grain structure refinement of metals and alloys under severe plastic deformation: experimental data and analysis of mechanisms. PNRPU Mechanics Bulletin, 2, 85-111. Petch, N. J., 1953. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute, 174, 25-28. Quey, R., Renversade, L., 2018. Optimal polyhedral description of 3D polycrystals: Method and application to statistical and synchrotron X-ray diffraction data. Computer Methods in Applied Mechanics and Engineering, 330, 308-333. Redenbach, C., 2009. Microstructure models for cellular materials. Computational Materials Science, 44(4), 1397-1407. Rollett, A., Rohrer, G. S., Humphreys, J., 2017. Recrystallization and related annealing phenomena. Newnes. Sohrabi, M. J., Naghizadeh, M., Mirzadeh, H., 2020. Deformation-induced martensite in austenitic stainless steels: A review. Archives of Civil and Mechanical Engineering, 20(4), 1-24. Suresh, K. S., Rollett, A. D., Suwas, S., 2013. Evolution of microstructure and texture during deformation and recrystallization of heavily rolled Cu-Cu multilayer. Metallurgical and Materials Transactions A, 44(8), 3866-3881. Suzudo, T., Kaburaki, H., 2009. An evolutional approach to the numerical construction of polycrystalline structures using the Voronoi tessellation. Physics Letters A, 373(48), 4484-4488. Trusov, P. V., Shveykin, A. I., 2013a. Multilevel crystal plasticity models of single-and polycrystals. Direct models. Physical mesomechanics, 16(2), 99-124. Trusov, P. V., Shveykin, A. I., 2013b. Multilevel crystal plasticity models of single-and polycrystals. Statistical models. Physical mesomechanics, 16(1), 23-33. Trusov, P. V., Shveikin, A. I., 2019. Multilevel models of mono-polycrystalline materials: theory, algorithms, application examples. Valiev, R. Z., Langdon, T. G., 2006. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in materials science, 51(7), 881-981. Yan, F., Xiong, W., Faierson, E. J., 2017. Grain structure control of additively manufactured metallic materials. Materials, 10(11), 1260. Zou, Z., Simonelli, M., Katrib, J., Dimitrakis, G., Hague, R., 2021. Microstructure and tensile properties of additive manufactured Ti-6Al-4V with refined prior- β grain structure obtained by rapid heat treatment. Materials Science and Engineering: A, 814, 141271.
Made with FlippingBook - professional solution for displaying marketing and sales documents online