PSI - Issue 40
V.P. Gulyaev et al. / Procedia Structural Integrity 40 (2022) 180–184 Gulyaev V.P. at al. / Structural Integrity Procedia 00 (2022) 000 – 000
184
5
conditions. Thus, the metal consumption can be reduced significantly due to more complete use of the bearing capacity of materials. The development of X-ray diffraction techniques that qualitatively measure the characteristics of the crystal lattice substructure of steels used in various designs will improve the methods for diagnosing the operational reliability of machines and metal structures. References Kostyuchenko, S., 2017. The Strategy of Russian Arctic Mineral Resources Development. Ekonomika i upravlenie 1, pp. 3. Bondareva, N., 2014 Opyt i perspektivy osvoenija Arktiki promyshlenno razvitymi stranami, in “ Strategicheskie prioritety razvitija Rossijskoj Arktiki. Publishing house “Science” , St. Petersburg, pp. 154. Arabei, A., 2010. Razvitie tehnicheskih trebovanij k metallu trub magistral'nyh gazoprovodov , in “ Proceedings of higher education institutes “Chernaja metallurgija” , Moscow, pp. 3. Vorobyov, Yu., Akimov, V., Sokolov, Yu., 2012. Sistemnye avarii i katastrofy v tehnosfere Rossii. All-Russian Research Institute on Civil Defense Problems and Emergency Situations of Russia, Moscow, 308 pp. Kushnarenko, V., Chirkov, Yu., Materinko, K., Lukashov, A., Shhepinov, D. 2016. Forecasting methods for residual resource of hazardous production facilities. Intellect. Innovation. Investments 7, pp. 177. Gulyaev, V., Petrov, P., Stepanova, K., 2018. Diagnostics of critical states of constructions operated under low temperature conditions. IOP Conf. Series: Earth and Environmental Science 193, doi: 10.1088/1755-1315/193/1/012015. Guljaev, V., Sibirjakov, M., Petrov, P., Stepanova, K., 2018. Effect of form of graphite inclusions in cast irons on distortions of crystal lattice and crack resistance at modeling of operational loads of working elements of mining machines functioning in natural low temperature conditions. Arctic and Subarctic Natural Resources 24, (2), pp. 58. Bokuchava, G., Papushkin, I., Sumin, V., Balagurov, A., Sheptjakov, D., 2014. Izuchenie mikrodeformacii v dispersionno-uprochnennyh staljah. Fizika tverdogo tela 56, (1), pp. 165. Koneva, N., Kiseleva, S., Popova, N., Kozlov, E., 2015. Distribution of excess dislocation density during deformation of austenitic steel. Bulletin of the Academy of Sciences: Physics Series 79, (9), pp. 1311. Kljuev, V., Artem'ev, B., Matveev, V., 2015. Update status and development of the methods for technical diagnostics. Industrial Laboratory. Diagnostics of materials 81, (4), pp. 73. Aleshin, N., 2011. Vozmozhnosti metodov nerazrushajushhego kontrolja pri ocenke naprjazhenno-deformirovannogo sostojanija nagruzhennyh metallokonstrukcij. Welding and Diagnostics 6, pp. 44. Botvina, L., 2008. Razrushenie: kinetika, mehanizmy, obshhie zakonomernosti. Nauka, Moscow, 334 pp. Klevcov, G., Klevcova, N., Frolova, O., 2006. Kinetika martensitnyh prevrashhenij v austenitnoj stali pri ciklicheskom nagruzhenii, in “ Materialy konferencij. Fundamental'nye issledovanija ” , Moscow, pp. 45. Dmitriev, S., Korznikova, E., Baimova, Yu., Velarde, M., 2016. Discrete Breathers in Crystals. Uspehi fizicheskih nauk, 186, (5), pp. 471. Doi.org/10.3367//UFNr.2016.02.037729. Zhu, T., Li, J., 2010. Prog. Mater. Sci. 55, pp.710. Ershov, P., Kuznecov, S., Snigireva, I., Junkin, V., Gojhman, A., Snigirev, A., 2015. Vysokorazreshajushhaja rentgenovskaja difraktometrija s primeneniem odnomernyh i dvumernyh prelomljajushhih linz. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques 6, pp. 55. Grinberg, E., Alekseev, A., Sheverev, S., 2016. Changes in the fine structure at low-temperature martensite decomposition in the hardened medium-carbon steel. Voprosy materialovedenija, 86, (2), pp. 20.
Made with FlippingBook - professional solution for displaying marketing and sales documents online