PSI - Issue 40
A.L. Svistkov et al. / Procedia Structural Integrity 40 (2022) 406–410 A.L. Svistkov at al. / Structural Integrity Procedia 00 (2022) 000 – 000
410
5
Acknowledgements The work is supported by Ministry of Science and Higher Education of the Russian Federation, research work № АААА - А20 -120022590044- 7 and Russian Foundation for Basic Research, Grant № 19 -08- 00725 А. References Clark, T., Woodley, R., De Halas, D., 1962. Gas-Graphite Systems, in “Nuclear Graphite”. In: Nightingale, R. (Ed.). Academic Press, New York, pp. 387. Deal, B., Grove, A., 1965. General Relationship for the Thermal Oxidation of Silicon. Journal of Applied Physics 36, 37 – 70. Deep-Burn Project: Annual Report for 2009, Idaho National Laboratory, Sept. 2009. Fachinger, J., den Exter, M., Grambow, B., Holgerson, S., Landesmann, C., Titov, M., Podruhzina, T., 2004. Behavior of spent HTR fuel elements in aquatic phases of repository host rock formations, 2nd International Topical Meeting on High Temperature Reactor Technology. Beijing, China, paper #B08. Fachinger, J., 2006. Behavior of HTR Fuel Elements in Aquatic Phases of Repository Host Rock Formations. Nuclear Engineering & Design 236, 54. Kraus G., 1978. Reinforcement of elastomers by carbon black Rubber Chem Technol.51(l) 297-321. Choi, S.-S., 2002. Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber. Polym. Adv. Technol. 13 466 474. Doi: 10.1002/pat.211 Weili Wu, Lei Tian, 2013. Formulation and morphology of kaolin-filled rubber composites. Applied Clay Science. 80 – 81 93-97. 10.1016/j.clay.2013.06.025 D. M. Paleri, A. Rodriguez-Uribe, M. Misra, A. K. Mohantye, 2021. Preparation and haracterization of eco-friendly hybrid biocomposites from natural rubber, biocarbon, and carbon black. XPRESS Polymer Letters. 15 3 236 – 249 https://doi.org/10.3144/expresspolymlett.2021.21 Garishin O K, Shadrin V V, Svistkov AL, Sokolov A K, Stockelhuber W K., 2017. Visco-elastic-plastic properties of natural rubber filled with carbon black and layered clay nanoparticles. Experiment and simulation. Polym Test. 63 133-140. Teshabaeva EU, Vapaev MD, Ibadullaev A., 2016. Modification of mineral fillers and their effect on the properties of rubbers. Austrian Journal Techn Nat Sci. 3-4 125-128. Wang, Z. P., & He, Y., 2011. Experimental Study on Thermal Conductivity Property of Rubber Composites Filled with Carbon Nanotubes. Advanced Materials Research. 221, 373 – 376. 10.4028/www.scientific.net/AMR.221.373 Nah, C., Lim, J.Y., Cho, B.H., Hong, C.K. and Gent, A.N., 2010. Reinforcing rubber with carbon nanotubes. J. Appl. Polym. Sci. 118: 1574 1581. 10.1002/app.32524 Nakaramontri, Y., Kummerlöwe, C., Nakason, C., & Vennemann, N. , 2013. Effect of Modified Natural Rubber and Functionalization of Carbon Nanotubes on Properties of Natural Rubber Composites. Advanced Materials Research. 844 301 – 304. 10.4028/www.scientific.net/amr.844.301 Y H Zhan, G Q Liu, H S Xia & N Yan, 2011 Natural rubber/carbon black/ carbon nanotubes composites prepared through ultrasonic assisted latex mixing process. Plastics, Rubber and Composites. 40:1, 32-39, DOI: 10.1179/174328911X12940139029284 Yoong Ahm Kim, Takuaya Hayashi, Morinobu Endo, Yasuo Gotoh, Noriaki Wada, Junji Seiyama, 2006. Fabrication of aligned carbon nanotube filled rubber composite. Scripta Materialia. 54(1) 31-35. 10.1016/j.scriptamat.2005.09.014 Tian, M., Cheng, L., Liang, W. and Zhang, L., 2005. The Anisotropy of Fibrillar Silicate/Rubber Nanocomposites. Macromol. Mater. Eng. 290: 681-687. Doi: 10.1002/mame.200400400 Jean Gillibert, Mathias Brieu, Julie Diani, 2010. Anisotropy of direction-based constitutive models for rubber-like materials International Journal of Solids and Structures. V. 47. I. 5. P. 640-646. DOI: 10.1016/j.ijsolstr.2009.11.002 G. Machado, G. Chagnon, D., 2012. Favier Induced anisotropy by the Mullins effect in filled silicone rubber. Mechanics of Materials. 50. 70-80. doi: 10.1016/j.mechmat.2012.03.006 Lavebratt, H. and Stenberg, B., 1994. Anisotropy in injection-molded ethylene-propylene-diene rubbers. Part I. Polym Eng Sci. 34: 905-912. Doi: 10.1002/pen.760341107 LAVEBRATT. H, STENBERG. B, 1992. ANISOTROPY IN THE VISCOELASTIC PROPERTIES OF FATIGUED RUBBERS 45. 8. 620-625. https://ocsial.com A.P. Voznyakovskii, A.Yu. Neverovskaya, Ja. A. Otvalko, E.V. Gorelova, A.N. Zabelina, 2018. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS. 9 21 125-128. Doi: 10.17586/2220-8054-2018-9-1-125-128.
Made with FlippingBook - professional solution for displaying marketing and sales documents online