PSI - Issue 40

L.R. Akhmetshin et al. / Procedia Structural Integrity 40 (2022) 7–11 L.R. Akhmetshin / Structural Integrity Procedia 00 (2022) 000 – 000

11

5

Alderson, A., Alderson, K.L., Attard, D., Evans, K.E.R.Gatt, K.E., Grima, J.N., Miller, W., Ravirala, N., Smith, C.W., Zieda, K., 2010. Elastic Constants of 3-, 4- and 6-connected Chiral and Anti-chiral Honeycombs Subject to Uniaxial In-plane Loading. Composites Science and Technology 70(7), 1042 – 1048. doi: 10.1016/j.compscitech.2009.07.009 Bhullar, S.K., Lala, N.L., Ramkrishna, S., 2015. Smart biomaterials - a review. Reviews on Advanced Materials Science 40(3), 303 – 14. Chen, Y.J., Scarpa, F., Liu, Y.J., Leng, J.S., 2013. Elasticity of anti-tetrachiral anisotropic lattices. International Journal of Solids and Structures 50(6), 996 – 1004. doi: 10.1016/j.ijsolstr.2012.12.004 Frenzel, T., Kadic, M., Wegener, M., 2017. Three-dimensional mechanical metamaterials with a twist. Science 358(6366), 1072. doi: 10.1126/science.aao4640 Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S., and Volkov, M.A., 2014. Negative Poisson’s Ratio for Cubic Crystals and Nano/Microtubes, Phys. Mesomech., vol. 17, no. 2, pp. 97 – 115. doi: 10.1134/S1029959914020027 Fu, M.-H., Zheng, B.-B., Li, W.-H., 2017. A novel chiral three- dimensional material with negative Poisson’s ratio and the equivalent elastic parameters. Composite Structures 176, 442-448. doi:10.1016/j.compstruct.2017.05.027 Hou, S., Liu, T., Zhang Z., Han X., Li Q., 2015. How does negative Poisson’s ratio of foam filler affect crashworthiness? Mat erials & Design. 82, 247 – 59. doi: 10.1016/j.matdes.2015.05.050 Hou, W., Yang, X., Zhang, W., Xia, Y., 2017. Design of energy dissipating structure with functionally graded auxetic cellular material. International Journal of Crashworthiness 23(4), 1 – 11. doi:10.1080/13588265.2017.1328764 Huang, Ch., Chen, L., 2016. Negative Poisson's Ratio in Modern Functional Materials. Advanced materials 28(37), 8079-8096. doi:10.1002/adma.201601363 Imbalzano, G., Linforth, S., Ngo, T. D., Lee, P. V. S., Tran, P., 2017a. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs. Composite Structures 183(1), 242 – 61. doi:10.1016/j.compstruct.2017.03.018 Imbalzano, G., Tran, P., Ngo, T. D., Lee, P. V. S., 2017b. Three-dimensional modelling of auxetic sandwich panels for localized impact resistance. Journal of Sandwich Structures & Materials. 19(3), 291 – 316. doi:10.1177/1099636215618539 Imbalzano, G., Tran, P., Ngo, T. D., Lee, P. V. S., 2016. A numerical study of auxetic composite panels under blast loadings. Composite Structures 135, 339-352. doi: 10.1016/j.compstruct.2015.09.038 Jiang, L., Hu, H., 2017. Low-velocity impact response of multilayer orthogonal structural composite with auxetic effect. Composite Structures 169, 62 – 8. doi: 10.1016/j.compstruct.2016.10.018 Sadovskii, V.M., Guzev, M.A., Sadovskaya, O.V., Qi, Ch., 2020. Modeling of Plastic Deformation Based on the Theory of an Orthotropic Cosserat Continuum. Physical Mesomechanics 23(3), 223 – 230. doi 10.1134/S1029959920030066 Scarpa, F., Blain, S., Lew, T., Perrott, D., Ruzzene, M., Yates, J.R., 2007. Elastic buckling of hexagonal chiral cell honeycombs. Composites Part A: Applied Science and Manufacturing 38(2), 280-289. doi:10.1016/j.compositesa.2006.04.007 Tee, K. F., Spadoni, A., Scarpa, F., Ruzzene, M., 2010. Wave Propagation in Auxetic Tetrachiral Honeycombs. Journal of Vibration and Acoustics 132(3), 031007. doi:10.1115/1.4000785

Made with FlippingBook - professional solution for displaying marketing and sales documents online