PSI - Issue 38

Adrian Loghin et al. / Procedia Structural Integrity 38 (2022) 331–341 A. Loghin et al. / Structural Integrity Procedia 00 (2021) 000–000

341

11

Acknowledgements

Authors would like to thank to Dr. Patrick Leser for providing some details related to the deterministic model used in this study.

References

Peng, D., Huang, P., Jones, R., 2018. Practical Computational Fracture Mechanics for Aircraft Integrity. Aircraft Sustainment and Repair, Chapter 4, 67–128. Loghin, A., Ismonov, S., 2020-a. Assessment of crack path uncertainly using 3D FEA and Response Surface Modeling. AIAA SciTech Forum, AIAA 2020-2295, https: // doi.org / 10.2514 / 6.2020-2295. Loghin, A., Ismonov, S., 2020-b. V&V 3D Fatigue Crack Growth Modeling: From Deterministic to Uncertainty Quantification (UQ) assessment. CAASE20, Indianapolis, IN, USA. https: // www.doi.org / 10.13140 / RG.2.2.25123.27680 Wilna du Toit, 2008. Radial Basis Function Interpolation, University of Stellenbosch. Loghin, A., 2018. Life Prediction Modeling Capabilities for FE Applications, CAASE, Cleveland OH. Leser, P.E, Hochhalter, J.D., Warner, J.E., Newman, J.A., Leser, W.P., Wawrzynek, P.A., Yuan, F., 2017. Probabilistic fatigue damage prognosis using surrogate models trained via three-dimensional finite element analysis. Structural Health Monitoring, 16(3), 291-308. Shantz, C.R, 2017. Uncertaintly quantification in crack growth modeling under multi-axial variable amplitude loading. Ph.D. thesis, Vanderbilt University. Loghin, A., Ismonov, S., 2019. Augmenting generic fatigue crack growth models using 3D finite element simulations and Gaussian process mod eling. Proceedings of the ASME Pressure Vessels & Piping Conference, San Antonio TX. Loghin, A., 2021. Quantification of the impact of crack shape constraint assumption onto predicted remaining useful life. Submitted to ASIP 2021, http: // www.asipcon.com / . Spear, A. D., Priest, A. R., Veilleux, M. G., Ingra ff ea, A. R., Hochhalter, J. D., 2011. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions. NASA / TM–2011-216879. Sobotka, J. C., McClung, R. C., 2019. Verification of Stress-Intensity Factor Solutions by Uncertainty Quantification. Journal of Verification, Validation and Uncertainty Quantification, vol. 4, 021003-1, ASME. Millwater, H., Ocampo, J., Crosby, N., 2019. Probabilistic methods for risk assessment of airframe digital twin structures. Engineering Fracture Mechanics, vol. 221, 106674. ANSYS, 2021. www.ansys.com Akkaram, S., Loghin, A., Khan, G., 2011. A Framework for Probabilistic Assessment of Fracture Mechanics Life. AFRL-RX-WP-TP-2011-4390. ABAQUS, 2021. https: // www.3ds.com / products-services / simulia / CalculiX, 2021. http: // www.dhondt.de / Virkler, D.A., Hillberry, B.M., Goel, P.K., 1978. The Statistical Nature of Fatigue Crack Propagation. Air Force Flight Dynamics Laboratory Report AFFDL-TR-78-43. Farahmand, B., Bockrath, G., Glassco, J., 1997. Fatigue and Fracture Mechanics of High-Risk Parts. Chapman & Hall. ISBN 978-0-412-12991-9. Tada, H., Paris, P.C., Irwin G.R, 2000. The Stress Analysis of Cracks Handbook. 3rd ed, ASME press, New York. Kobryn, P.A, 2019. The Digital Twin Concept. Frontiers in Engineering, Winter edition, National Academy of Engineering. Virtanen, P., Gommers, R., Oliphant, T.E., et al, 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272. Annis, C., 2003. Probabilistic Life Prediction Isn’t as Easy as It Looks. Probabilistic Aspects of Life Prediction, ASTM STP-1450, W. S. Johnson and B.M. Hillberry, Eds., ASTM International, West Conshohocken, PA, 2003.

Made with FlippingBook Digital Publishing Software