PSI - Issue 38

7

Author name / Structural Integrity Procedia 00 (2021) 000 – 000

M. Bonneric et al. / Procedia Structural Integrity 38 (2022) 141–148

147

4. Conclusions In this work, it was proposed to introduce artificial defects directly into the CAD files of additively manufactured specimens to establish the Kitagawa Takahashi diagram of the AlSi7Mg0.6 alloy. The fatigue cracks successfully initiated at the artificial defects, resulting in a limited scatter of the results. In addition, the El-Haddad model determined with artificial defect data provided a satisfying prediction of the fatigue strength associated to the natural defects. At the present time, further numerical work is being carried out to study the influence of the artificial defect morphology, as some differences in terms of fatigue strengths were observed between the different artificial defect geometries considered in this study. Acknowledgements This work falls within the framework of the ANDDURO project hosted by the French Institute of Technology IRT Saint Exupery, supported by Occitanie Region and industrial partners. In addition, the specimens were produced on the FUTURPROD additive manufacturing platform of I2M Institute. References [1] E. O. Olakanmi, R. F. Cochrane, et K. W. Dalgarno, « A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties », Progress in Materials Science , vol. 74, p. 401 ‑ 477, 2015, doi: 10.1016/j.pmatsci.2015.03.002. [2] B. Zhang, Y. Li, et Q. Bai, « Defect Formation Mechanisms in Selective Laser Melting: A Review », Chinese Journal of Mechanical Engineering , vol. 30, n o 3, p. 515 ‑ 527, 2017, doi: 10.1007/s10033-017-0121-5. [3] N. Sanaei, « Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review », Progress in Materials Science , p. 41, 2021. [4] S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, et F. Walther, « Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting », Journal of Materials Processing Technology , vol. 221, p. 205 ‑ 213, 2015, doi: 10.1016/j.jmatprotec.2015.02.023. [5] S. Beretta, M. Gargourimotlagh, S. Foletti, A. du Plessis, et M. Riccio, « Fatigue strength assessment of “as built” AlSi10Mg manufactured by SLM with different build orientations », International Journal of Fatigue , vol. 139, 2020, doi: 10.1016/j.ijfatigue.2020.105737. [6] W. H. Kan, Y. Nadot, M. Foley, L. Ridosz, G. Proust, et J. M. Cairney, « Factors that affect the properties of additively-manufactured AlSi10Mg: Porosity versus microstructure », Additive Manufacturing , vol. 29, p. 100805, 2019, doi: 10.1016/j.addma.2019.100805. [7] M. Bonneric, C. Brugger, et N. Saintier, « Effect of hot isostatic pressing on the critical defect size distribution in AlSi7Mg0.6 alloy obtained by selective laser melting », International Journal of Fatigue , vol. 140, 2020, doi: 10.1016/j.ijfatigue.2020.105797. [8] Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions , Elsevier. 2002. [9] T. S. Kitagawa, « Applicability of fracture mechanics to very small cracks », ASM Proceedings of 2nd international conference on mechanical Metalspark , p. 627-631, 1976. [10] M. Vincent, Y. Nadot, C. Nadot-Martin, et A. Dragon, « Interaction between a surface defect and grain size under high cycle fatigue loading: Experimental approach for Armco iron », International Journal of Fatigue , vol. 87, p. 81 ‑ 90, 2016, doi: 10.1016/j.ijfatigue.2016.01.013. [11] V.-D. Le, F. Morel, D. Bellett, N. Saintier, et P. Osmond, « Simulation of the Kitagawa-Takahashi diagram using a probabilistic approach for cast Al-Si alloys under different multiaxial loads », International Journal of Fatigue , vol. 93, p. 109 ‑ 121, 2016, doi: 10.1016/j.ijfatigue.2016.08.014. [12] S. Romano, A. Brückner-Foit, A. Brandão, J. Gumpinger, T. Ghidini, et S. Beretta, « Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength », Engineering Fracture Mechanics , vol. 187, p. 165 ‑ 189, 2018, doi: 10.1016/j.engfracmech.2017.11.002. [13] E. Pessard, M. Lavialle, P. Laheurte, P. Didier, et M. Brochu, « High-cycle fatigue behavior of a laser powder bed fusion additive manufactured Ti-6Al-4V titanium: Effect of pores and tested volume size », International Journal of Fatigue , vol. 149, 2021, doi: 10.1016/j.ijfatigue.2021.106206. [14] J. N. Domfang Ngnekou et al. , « Fatigue properties of AlSi10Mg produced by Additive Layer Manufacturing », International Journal of Fatigue , vol. 119, p. 160 ‑ 172, 2019, doi: 10.1016/j.ijfatigue.2018.09.029. [15] M. Bonneric, C. Brugger, et N. Saintier, « Investigation of the sensitivity of the fatigue resistance to defect position in aluminium alloys obtained by Selective laser melting using artificial defects », International Journal of Fatigue , vol. 134, 2020, doi: 10.1016/j.ijfatigue.2020.105505. [16] O. Andreau, E. Pessard, I. Koutiri, P. Peyre, et N. Saintier, « Influence of the position and size of various deterministic defects on the high cycle fatigue resistance of a 316L steel manufactured by laser powder bed fusion », International Journal of Fatigue , vol. 143, 2021, doi: 10.1016/j.ijfatigue.2020.105930. [17] M. H. El Haddad, T. H. Topper, et K. N. Smith, « Prediction of non propagating cracks », Engineering Fracture Mechanics , vol. 11, n o 3,

Made with FlippingBook Digital Publishing Software